Name: \qquad
Date: \qquad

Stoichiometry
 Topic\#10

Objectives

Stoichiometry

- Calculate formula mass/molecular mass from experimental data.
- Find percent composition of a compound or mixture.
- Define mole in terms of Avogadro's number.
- Discuss relationship between mass and mole.
- Calculate the empirical formula and molecular formula from experimental data.
- Calculate the mass of an unknown from the mass of a known reactant or product.
- Distinguish between limiting and excess reactants.

Vocabulary

- composition
stoichiometry
- molar mass
- mole ratio
- formula mass
- reaction stoichiometry
- empirical formula
- actual yield
- molecular formula
- excess reactant

Formulas/Conversion Definitions/Diagrams
Composition Stoichiometry
Formulas:
Molar Mass (MM)

- $A_{x} B_{y}=x A+y B$
- $A_{x}(B C)_{y}=x A+y B+y C$
- $A_{x}\left(\mathrm{BC}_{z}\right)_{y}=x A+y B+y z C$

Percent Composition (\% comp)

- $\mathrm{xA} / M M\left(\mathrm{~A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}}\right) \times 100 \% \rightarrow$ element A
- $\mathrm{yB} / M M\left(\mathrm{~A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}}\right) \times 100 \% \rightarrow$ element B

Empirical formula (EF)

- $\mathrm{EF}=$ simplest whole number ratio of the elements in a compound
- $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \mathrm{CH}_{2} \mathrm{O}$ (empirical formula)
- $E M=$ the mass of the EF
- $\mathrm{C}+2 \mathrm{H}+\mathrm{O}$

Molecular Formula (MF)

- $\mathrm{n}(\mathrm{EF})=\mathrm{MF}$
- $\mathrm{n}=M M / E M$
- $M M$ - molar mass
- $E M$ - empirical mass

Reaction Stoichiometry

Formulas:

Generic Chemical Equation

$\mathrm{xA}_{1}+\mathrm{yA}_{2} \rightarrow \mathrm{zB}_{1}+\mathrm{wB}_{2}$
mole ratio: $x: y: z: w$
(A given and \mathbf{B} unknown; \mathbf{x} coefficient for \mathbf{A}, \mathbf{z} coefficient for \mathbf{B})
(If the given is \mathbf{B}, then just reverse the process.)

Mole to Mole

$$
\mathrm{A}(\mathrm{~mol})\left(\frac{(\mathrm{z})}{(\mathrm{x})}\right) \quad=\mathrm{B}(\mathrm{~mol})
$$

Mole to Mass (A given, B unknown)
$\mathrm{A}(\mathrm{mol})\left(\frac{(\mathrm{z})\left(M M_{\mathrm{B}}\right.}{(\mathrm{x})}\right) \quad=\mathrm{B}(\mathrm{grams})$

Mass to Mole (A given, B unknown)

$$
\mathrm{A}(\text { grams })\left(\frac{(\mathrm{z})}{(\mathrm{x})\left(M M_{\mathrm{A}}\right)}\right) \quad=\mathrm{B}(\mathrm{~mol})
$$

Mass to Mass (A given, B unknown)

$$
\mathrm{A}(\text { grams })\left(\frac{(\mathrm{z})\left(M M_{\mathrm{B}}\right)}{(\mathrm{x})\left(M M_{\mathrm{A}}\right)}\right) \quad=\mathrm{B}(\mathrm{grams})
$$

Limiting Reactant (A_{1} vs. A_{2} givens, B unknown)

$$
\left.\begin{array}{l}
\mathrm{A}_{1} \text { (grams) }\left(\frac{(\mathrm{z})\left(M M_{\mathrm{B}}\right)}{(\mathrm{x})\left(M M_{\mathrm{A} 1}\right)}\right) \\
\mathrm{A}_{2}(\text { grams })\left(\frac{\mathrm{B}(\mathrm{grams})\left(\text { from } \mathrm{A}_{1}\right)}{(\mathrm{z})\left(M M_{\mathrm{B}}\right)}\left(M M_{\mathrm{A} 2}\right)\right.
\end{array}\right) \quad \begin{array}{r}
\text { You can solve for either } \mathrm{B}_{1} \text { or } \mathrm{B}_{2}, \text { but it } \\
\text { must be consistent. } \\
\mathrm{A}_{1} \rightarrow \mathrm{~B}_{1} \text { and } \mathrm{A}_{2} \rightarrow \mathrm{~B}_{1} \\
\text { or }
\end{array}
$$

Percent Yield

$$
\% \text { yield }=\frac{\text { actual }}{\text { theoretical }} \times 100 \%
$$

