AMSAT CHEM IH TOPIC# 10 STOICHIOMETRY NOTES

TABLE OF CONTENTS

- 1. Molar Mass, % Composition, Empirical/Molecular Formula
- 2. Introduction to Stoichiometry
- 3. Ideal Stoichiometric Calculations
- 4. Limiting Reactant and Percent Yield

MOLAR MASS, % COMPOSITION, EMPIRICAL/MOLECULAR FORMULA SECTION #1

• Intro

- Composition stoichiometry
 - □ Mass relationships of elements in compounds
 - Counting atoms
 - The number of atoms in a formula unit/molecule depends on the subscripts and the distributive property
 - $\Box \quad Ca_3(PO_4)_2 = 3Ca + 2P + (2x4)O = 3Ca + 2P + 8O$
 - $\Box \quad CuSO_4 \bullet 5H_2O = Cu + S + 4O + 5(2H + O) = Cu + S + 9O + 10H$
 - Empirical formula
 - o Simplest whole number ratio between elements in a compound
 - \circ All ionic compounds (start with a metal or NH₄⁺) are written in empirical formula (EF).
 - \Box Be careful about the makeup of ions.
 - \Box Ions cannot be reduced from their inherent formula
 - Molecular compounds (compound starts with a nonmetal)
 - □ Written as molecular formulas (MF)
 - The number of atoms needed to make 1 molecule of the substance
 - \Box May be simplified to an empirical formula but does not reflect the
 - true molecule (C_6H_6 molecular formula; CH empirical formula)
 - Molar Mass (MM)
 - Mass of 1 mole of any substance
 - □ Use method for counting atoms, but substitute in the atomic mass (in grams) for each element's symbol.
 - Label: g/mol (round to two decimal places (hundredth))
 - $\Box H_2O = 2H + O = 2(1.01) + 16 = 18.02 \text{ g/mol}$
 - $\Box \quad CuSO_4 \bullet 5H_2O = Cu + S + 4O + 10H + 5O$

= 63.55 + 32.07 + 4(16) + 10(1.01) + 5(16) =

• Sample Problem 9.1 – Molar Mass (MM)

What is the *MM* of barium nitrate, Ba(NO₃)₂?

Ans: 261.35g/mol

- □ <u>Practice</u>
 - (1) How many moles of atoms of each element are there in one mole of the following compounds?
 (a) Al₂S₃
 (b) NaNO₃
 (c) Ba(OH)₂
 - (2) Find the MM of each compound. (a) Al_2S_3 (b) $NaNO_3$ (c) $Ba(OH)_2$

Ans: 150.17g/mol, 85.00g/mol, 171.35g/mol

• Molar mass as a conversion factor

- Sample Problem 9.2 MM as a Conversion factor
 What is the mass in grams of 2.50 mol of oxygen gas?
 Ans: 80.0g
- <u>Sample Problem 9.3</u> *MM* as a Conversion Factor Ibuprofen, $C_{13}H_{18}O_2$, is the active ingredient in many nonprescription pain relievers. Its *MM* is 206.29 g/mol.
 - (a) If the tablets in the bottle contain a total of 33g of ibuprofen, how many moles of ibuprofen are in the bottle?Ans: 0.16mol
 - (b) How many molecules of ibuprofen are in the bottle? Ans: 9.6×10^{22} molecules
 - (c) What is the total mass in grams of carbon in 33g of ibuprofen? Ans: 25g of C
 - □ Practice
 - (1) How many moles of compound are in the following?

(a) $6.60g (NH_4)_2SO_4$ (b) $4.5kg \text{ of } Ca(OH)_2$ Ans: a) 0.542mol, (b) 61mol

- (2) What is the mass in grams of 6.25 mol of copper (II) nitrate? Ans: 1170g Cu(NO₃)₂
- Percentage Composition
 - The mass percentage of each element in a compound

mass of element in 1 mol of compound x 100%

molar mass of compound

- \Box Known as the percentage composition of the compound
- Sample Problem 9.3 Percent Composition

```
Find the percentage composition of copper (I) sulfide, Cu<sub>2</sub>S. Ans: Cu: 79.9%, S: 20.1%
```

• Sample Problem 9.4 – Percent Composition

As some salt crystallize from a water solution, they bind water molecules in their crystal structure. Sodium carbonate forms such a *hydrate*, in which 10 water molecules are present for every formula unit of sodium carbonate. Find the mass percentage of water in sodium carbonate decahydrate, Na₂CO₃•10H₂O, which has a MM of 286.14g/mol. Ans: 63.0% H₂O

- □ <u>Practice</u>
 - (1) Find the percentage composition of the following. (a) $PbCl_2$ (b) $Ba(NO_3)_2$
 - (2) Find the mass percentage of water in $ZnSO_4 \bullet 7H_2O$.
 - (3) Magnesium hydroxide is 54.87% oxygen by mass. How many grams of oxygen are in 175g of the compound? How many mole of oxygen is this?
 - Ans: (1) 74.5% Pb, 25.5%Cl (2) 43.9% H₂O (3) 96.0g O
- Calculating Empirical Formulas
 - Working example 78.1% B and 21.9% H
 - \circ Write elements involved in compound with x, y, z, etc. as subscript variables. $\hfill B_x H_y$
 - From percentage composition, assume a 100g sample so percentages become grams
 - □ 78.1%B and 21.9%H

- Becomes 78.1g and 21.9g
- Convert the masses to moles
 - $\hfill\square$ Only moles can be compared to moles, grams of a substance cannot be compared
 - 78.1g/10.81g = 7.22mol B
 - 21.9g/1.01 = 21.7mol H
- Divide every mole by the smallest moles (solve for subscripts)
 - \Box y = 21.7/7.22 = 3.01
 - \Box x = 7.22/7.22 = 1
 - For every 1 B there are 3 H
- Substitute for subscripts to determine empirical formula
 - $\square B_1H_3$
 - Erase any 1's placed as subscripts

o BH₃

- □ Empirical mass (EM)
 - Mass of the empirical formula

 \circ B + 3H = 10.81 + 3(1.01) = 13.84 amu

• Sample Problem 9.5 – Empirical Formula

Quantitative analysis shows that a compound contains 32.38% sodium, 22.65% sulfur, and 44.99% oxygen. Find the empirical formula of this compound.

o Sample Problem 9.6 – Empirical Formula

Analysis of a 10.150g sample of a compound known to contain only phosphorus and oxygen indicates a phosphorus content of 4.433g. What is the empirical formula of this compound?

- □ Practice
 - (1) A compound is found to contain 63.52% iron and 36.48% sulfur. Find its empirical formula. Ans: FeS
 - (2) Find the empirical formula of a compound found to contain 26.56% potassium, 35.41% chromium, and the remainder oxygen. Ans: K₂Cr₂O₇
 - (3) Analysis of 20.0g of a compound containing only calcium and bromine indicates that 4.00g of calcium are present. What is the empirical formula of the compound formed? Ans: CaBr₂
- Calculation of Molecular Formula
 - The ACTUAL formula for the molecular substance.
 - \Box Find EF (empirical formula)
 - BH₃
 - \Box Calculate empirical mass.
 - B + 3H = 10.81 + 3(1.01) = 13.84 amu
 - Molecular mass (given) is 27.67 amu
 - □ Calculate n
 - n= molecular mass (or formula mass) = $\frac{27.67}{13.84}$ = 2 empirical mass
 - □ Find molecular formula
 - Multiply the subscripts on the empirical formula by n

 n(EF)

$\Box \quad 2(BH_3) = B_2H_6$

• B₂H₆ is the molecular formula, the "true formula" for borane

• Sample Problem 9.7 – Molecular Formula

In Sample Problem 9.6, the empirical formula of a compound of phosphorus and oxygen was found to be P_2O_5 . Experimentation shows that the *MM* of this compound is 283.89g/mol. What is the compound's molecular formula? Ans: P_4O_{10}

- □ <u>Practice</u>
 - (1) Determine the molecular formula of the compound with the empirical formula CH and a formula mass of 78.110amu. Ans: C_6H_6 (benzene)
 - (2) A sample of a compound with a formula mass of 34.00amu is found to consist of 0.44g H and 6.92g O. Find its molecular mass.Ans: H₂O₂

INTRODUCTION TO STOICHIOMETRY SECTION #2

- Reaction stoichiometry
 - □ Mass relationships between reactants and products
 - o Problem Type 1
 - \Box Given (X) and unknown (Y) are amounts in moles
 - Plan
 - $\circ \quad X \text{ mol} \to Y \text{ mol}$
 - o Problem Type 2
 - \Box Given (X) in moles and unknown in grams
 - Plan

 $\circ \quad X \bmod \to Y \bmod \to Y \text{ grams}$

- Problem Type 3
 - \Box Given (x) in grams and unknown in moles
 - Plan

 $\circ \quad X \text{ grams} \to X \text{ mol} \to Y \text{ mol}$

- Problem Type 4
 - \Box Given (X) in grams and unknown in grams
 - Plan

 $\circ \quad X \text{ grams} \to X \text{ mol} \to Y \text{ mol} \to Y \text{ grams}$

- o Mole Rations
 - \Box Used to convert moles of X into moles of Y
 - The coefficients of a balanced equation
 - A conversion factor relating the amounts in moles of any two substances involved in a reaction

- $\circ \quad 2\mathrm{Al}_2\mathrm{O}_3(l) \to 4\mathrm{Al}(s) + 3\mathrm{O}_2(g)$
 - □ Mole ratio
 - $2:4:3 \rightarrow x:y:z \text{ or } a:b:c$

IDEAL STOICHIOMETRIC CALCULATIONS SECTION #3

- Intro
 - o Assume reactions occur in ideal conditions
 - \Box All reactants are converted to products
 - Ideal conditions very rarely occur in a laboratory
 - \Box These reactions are considered theoretical due to the assumption of ideal conditions
 - Thus calculations involving these reactions yield theoretical answers
 - Used math to compute, then the amount is theoretical
 - □ Real world (experimental) work yields actual amounts
 - So, we have theoretical and actual results
 - One is done mathematically and the other experimentally
- Conversions of Moles X to Moles Y

Plan:

amount of given (mol) \rightarrow amount of unknown (mol)

• Sample Problem 9.8 – Mole to Mole Conversions

In a spacecraft, the carbon dioxide exhaled by astronauts can be removed by its reaction with lithium hydroxide, LiOH, according to the following chemical equation. $CO_2(g) + 2LiOH(s) \rightarrow Li_2CO_3(s) + H_2O(l)$. How many moles of lithium hydroxide are required to react with 20mol of CO₂, the average amount exhaled by a person each day? Ans: 40 mol LiOH

- □ <u>Practice</u>
 - (1) Ammonia, NH₃, is widely used as a fertilizer and in many household cleaners. How many moles of ammonia are produced when 6mol of hydrogen gas react with an excess of nitrogen gas?
 Ans: 4mol NH₃
 - (2) The decomposition of potassium chlorate, KClO₃, is used as a source of oxygen in the laboratory. How many moles of potassium chlorate are needed to produce 15 mol of oxygen? Ans: 10. mol KClO₃
- Conversion of Moles X to Mass Y

Plan:

MM of unknown (Y)

amount of given (mol) \rightarrow amount unknown (mol) \rightarrow mass of unknown (grams)

• Sample Problem 9.9 – Mole to Mass

In photosynthesis, plants use energy from the sun to produce glucose, $C_6H_{12}O_6$, and oxygen from the reaction of carbon dioxide and water. What mass of glucose is produced when 3.00mol of water react with carbon dioxide? Ans: 90.1g $C_6H_{12}O_6$

- Sample Problem 9.10 Mole to Mass
 What mass of carbon dioxide is needed to react with 3.00mol of H₂O in the photosynthesis reaction described above?
 Ans: 132g CO₂
 - □ Practice
 - (1) When magnesium burns in air, it combines with oxygen to form magnesium oxide according to the following equation. $2Mg + O_2 \rightarrow 2MgO$ What mass of magnesium oxide is produced from 2.00mol of magnesium?

```
Ans: 80.6g MgO
```

- (2) What mass of oxygen combines with 2.00mol of magnesium in this same reaction? Ans: 32.0 g O_2
- (3) What mass of glucose can be produced from a photosynthesis reaction that occurs using 10mol CO₂? $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$ Ans: 300g $C_6H_{12}O_6$
- Conversion of Mass X to Moles Y

Plan:

mass of given (grams) \rightarrow amount given (mol) \rightarrow moles of unknown (mol) MM of X (given)

• Sample Problem 9.11 – Mass to Mole

The first step in the industrial manufacture of nitric acid is the catalytic oxidation of ammonia. $NH_3 + O_2 \rightarrow NO + H_2O$. The reaction is run using 824g of NH_3 and excess oxygen.

- (a) How many moles of NO are formed? Ans: 48.4mol NO
- (b) How many moles of H_2O are formed? Ans: 72.5mol H_2O
 - □ Practice

Oxygen was discovered by Joseph Priestly in 1774 when he heated mercury (II) oxide and it decomposed into its constituent elements.

- (1) How many moles of mercury (II) oxide, HgO, are needed to produce 125g of oxygen, O₂? Ans: 7.81 moles HgO
- (2) How many moles of mercury are produced? Ans: 7.81 moles Hg

Mass to Mass Calculations

Plan:

MM of unknown (Y)

mass given (grams) → mole given (mol) → mol unknown (mol) → mass unknown (grams) MM of given (X)

• Sample Problem 9.12 - Mass to Mass

Tin (II) fluoride, SnF_2 , is used in some toothpaste. It is made by the reaction of tin with hydrogen fluoride according to the following equation. $Sn + 2HF \rightarrow SnF_2 + H_2$ How many grams of SnF_2 are produced from the reaction of 30.00g of HF with Sn? Ans: 117.5g SnF₂

□ Practice

- (1) Laughing gas (nitrous oxide, N₂O) is sometimes used as an anesthetic in dentistry. It is produced when ammonium nitrate is decomposed according to the following reaction. $NH_4NO_3 \rightarrow N_2O + H_2O$
 - (a) How many grams of NH₄NO₃ are required to produce 33.0g of N₂O?Ans: 60.0g NH₄NO₃
 - (b) How many grams of water are produced in this reaction? Ans: $27.0g H_2O$
- (2) When copper metal is added to silver nitrate in solution, silver metal and copper (II) nitrate are produced. What mass of silver is produced from 100.g of Cu? Ans: 339g
- (3) What mass of aluminum is produced by the decomposition of 5.0kg of Al₂O₃?

Ans: 2.6kg

LIMITING REACTANT AND PERCENT YIELD SECTION #4

- Limiting reactant/Excess reactant
 - Limiting and excess reactant go hand in hand
 - \Box If a reactant is not the limiting reactant then it is the excess reactant
 - Limiting reactant (limiting reagent) (LR)
 - \Box Limits the amt of products that can be produced.
 - \Box 100% of the limiting reactant will be used during the reaction
 - o Excess reactant (ER)
 - $\hfill\square$ Is not used up in the reaction
 - Always be a certain amt left over after reaction has gone to completion
 - $\hfill\square$ Take the reaction between carbon and oxygen

 $C(s) + O_2(g) \rightarrow CO_2(g)$

- 1 mole of C reacts with 1 mole of O₂ to produce 1 mole of CO₂
 - When we have equal amounts of the two reactants
- What is the LR when we have 5 mol of C and 10 mole of O₂?

$1 \text{mol } \text{C} + 1 \text{mol } \text{O}_2 = 1 \text{mol } \text{CO}_2$ (using mole ratios from equation)

 $5 \text{mol } \text{C} + 10 \text{mol } \text{O}_2 = 5 \text{mol } \text{CO}_2 + 5 \text{mol } \text{O}_2(\text{not used})$

5 C atoms + 10 O_2 molecules \rightarrow 5 CO_2 molecules + 5 O_2 molecules

(unused ER)

<u>Sample Problem 9.13</u> – Limiting/Excess Reactant

(ER)

Silicon dioxide (quartz) is usually quite unreactive but reacts readily with hydrogen fluoride according to the following equation. $SiO_2(s) + 4HF(g) \rightarrow SiF_4(g) + 2H_2O(l)If$ 2.0mol of HF are exposed to 4.5 mol of SiO₂, which is the limiting reactant? Ans: HF

□ <u>Practice</u>

(LR)

(1) Some rocket engines use a mixture of hydrazine, N_2H_4 , and hydrogen peroxide, H_2O_2 , as the propellant. The reaction is given by the following equation.

$$N_2H_4+H_2O_2 \rightarrow N_2+4H_2O$$

- (a) Which is the LR in this reaction when 0.750mol of N₂H₄ is mixed with 0.500mol of H₂O₂?Ans: H₂O₂
- (b) How much of the ER, in moles, remains unchanged? Ans: $0.500 \text{mol } N_2H_4$
- (c) How much of each product, in moles, is formed? Ans: 0.250mol N₂, 1.00mol H₂O
- (2) If 20.5g of chlorine is reacted with 20.5g of sodium, which reactant is in excess? How do you know? Ans: sodium is in excess because only 0.578mol Na is needed.

• Sample Problem 9.14 – Limiting Reactant (LR)

The black oxide of iron, Fe₃O₄, occurs in nature as the mineral magnetite. This substance can also be made in the laboratory by the reaction between red-hot iron and steam according to the following equation. $3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$

- (a) When 36.0g of H_2O is mixed with 167g of Fe, which is the LR? Ans: H_2O
- (b) What mass of black iron oxide is produced? Ans: $116g Fe_3O_4$

(c) What mass of ER remains when the reaction is completed? Ans: 83.2g Fe remaining

□ <u>Practice</u>

(1) Zinc and sulfur react to form zinc sulfide according to the following reaction.

$$8Zn(s) + S_8(s) \rightarrow 8ZnS(s)$$

(a) If 2.00mol of Zn are heated with 1.00mol of S_8 , identify the limiting reactant.

Ans: Zn

- (b) How many moles of excess reactant remain? Ans: $0.75mo S_8$ remains
- (c) How many moles of the product are formed? Ans: 2.00mol ZnS
- (2) Carbon reacts with steam, $H_2O(g)$, at high temperatures to produce hydrogen and carbon monoxide.
 - (a) If 2.40 mol of carbon are exposed to 3.10mol of steam, identify the limiting reactant. Ans: carbon
 - (b) How many moles of product are formed? Ans: 2.40mol H_2 and 2.40 mol CO

(c) What mass of each product is formed? Ans: $4.85g H_2$ and 67.2gCO

Percent Yield

- Theoretical yield
 - \Box Calculated using the masses given within the problem

- Assume 100% conversion of one of the reactants into product
 - In an Ideal world
- \Box Life is messy and reactions do not have 100% conversion
- o Actual yield
 - □ The actual conversion measured form an actual experiment not one done on Ideal world (see above under theoretical).
- **Problem 9.15** Percent Yield
 - \Box Chlorobenzene, C₆H₅Cl, is used in the production of many important chemicals, such as aspirin, dyes, and disinfectants. One industrial method of preparing chlorobenzene is to react benzene, C₆H₆, with chlorine, as represented by the following equation.

 $C_6H_6(l) + Cl_2(g) \rightarrow C_6H_5Cl(s) + HCl(g)$

When 36.8g of C_6H_6 react with an excess Cl_2 , the actual yield of C_6H_5Cl is 38.8g. What is the percent yield of C_6H_5Cl ? Ans: 73.2%

- □ <u>Practice</u>
 - (1) Methanol can be produced through the reaction of CO with H₂ in the presence of a catalyst. $CO(g) + 2H_2(g) \rightarrow CH_3OH(l)$. If 75.0g of CO reacts to produce 68.4g CH₃OH, what is the percent yield of CH₃OH? Ans: 79.8%
 - (2) Aluminum reacts with excess copper (II) sulfate according to the reaction given below. If 1.85g of Al reacts and the percent yield of Cu if 56.6%, what mass of Cu is produced? Al(s) + CuSO₄(aq) → Al₂(SO₄)₃(aq) + Cu(s) (unbalanced)

Ans: 3.70g

<u>Home</u>