Amsat Chem IH Topic\# 10 STOICHIOMETRY NOTES

TABLE OF CONTENTS

1. Molar Mass, \% Composition, Empirical/Molecular Formula
2. Introduction to Stoichiometry
3. Ideal Stoichiometric Calculations
4. Limiting Reactant and Percent Yield

Molar Mass, \% Composition, Empirical/Molecular Formula Section \#1

- Intro
- Composition stoichiometry
\square Mass relationships of elements in compounds
- Counting atoms
- The number of atoms in a formula unit/molecule depends on the subscripts and the distributive property
$\square \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=3 \mathrm{Ca}+2 \mathrm{P}+(2 \mathrm{x} 4) \mathrm{O}=3 \mathrm{Ca}+2 \mathrm{P}+8 \mathrm{O}$
$\square \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=\mathrm{Cu}+\mathrm{S}+4 \mathrm{O}+5(2 \mathrm{H}+\mathrm{O})=\mathrm{Cu}+\mathrm{S}+9 \mathrm{O}+10 \mathrm{H}$
- Empirical formula
- Simplest whole number ratio between elements in a compound
- All ionic compounds (start with a metal or $\mathrm{NH}_{4}{ }^{+}$) are written in empirical formula (EF).

Be careful about the makeup of ions.
\square Ions cannot be reduced from their inherent formula

- Molecular compounds (compound starts with a nonmetal)
$\square \quad$ Written as molecular formulas (MF)
- The number of atoms needed to make 1 molecule of the substance
\square May be simplified to an empirical formula but does not reflect the true molecule ($\mathrm{C}_{6} \mathrm{H}_{6}$ - molecular formula; CH - empirical formula)
- Molar Mass (MM)
- Mass of 1 mole of any substance

Use method for counting atoms, but substitute in the atomic mass (in grams) for each element's symbol.

- Label: $\mathrm{g} / \mathrm{mol}$ (round to two decimal places (hundredth))
$\square \mathrm{H}_{2} \mathrm{O}=2 \mathrm{H}+\mathrm{O}=2(1.01)+16=18.02 \mathrm{~g} / \mathrm{mol}$
$\square \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=\mathrm{Cu}+\mathrm{S}+4 \mathrm{O}+10 \mathrm{H}+5 \mathrm{O}$

$$
=63.55+32.07+4(16)+10(1.01)+5(16)=
$$

\qquad

- Sample Problem 9.1 - Molar Mass (MM)

What is the $M M$ of barium nitrate, $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$?
(1) How many moles of atoms of each element are there in one mole of the following
compounds?
(a) $\mathrm{Al}_{2} \mathrm{~S}_{3}$
(b) NaNO_{3}
(c) $\mathrm{Ba}(\mathrm{OH})_{2}$
(2) Find the MM of each compound.
d. (a) $\mathrm{Al}_{2} \mathrm{~S}_{3}$
(b) NaNO_{3}
(c) $\mathrm{Ba}(\mathrm{OH})_{2}$

Ans: $150.17 \mathrm{~g} / \mathrm{mol}, 85.00 \mathrm{~g} / \mathrm{mol}, 171.35 \mathrm{~g} / \mathrm{mol}$

- Molar mass as a conversion factor
- Sample Problem 9.2-MM as a Conversion factor What is the mass in grams of 2.50 mol of oxygen gas?

Ans: 80.0 g

- Sample Problem 9.3-MM as a Conversion Factor Ibuprofen, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$, is the active ingredient in many nonprescription pain relievers. Its $M M$ is $206.29 \mathrm{~g} / \mathrm{mol}$.
(a) If the tablets in the bottle contain a total of 33 g of ibuprofen, how many moles of ibuprofen are in the bottle?

Ans: 0.16 mol
(b) How many molecules of ibuprofen are in the bottle? Ans: 9.6×10^{22} molecules
(c) What is the total mass in grams of carbon in 33 g of ibuprofen?

Ans: 25 g of C

Practice

(1) How many moles of compound are in the following?
(a) $6.60 \mathrm{~g}_{\left(\mathrm{NH}_{4}\right)}^{2} \mathrm{SO}_{4}$
(b) 4.5 kg of $\mathrm{Ca}(\mathrm{OH})_{2}$
Ans: a) 0.542 mol , (b) 61 mol
(2) What is the mass in grams of 6.25 mol of copper (II) nitrate? Ans: $1170 \mathrm{~g} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$

- Percentage Composition
- The mass percentage of each element in a compound
mass of element in 1 mol of compound $\times 100 \%$ molar mass of compound
Known as the percentage composition of the compound
- Sample Problem 9.3 - Percent Composition

Find the percentage composition of copper (I) sulfide, $\mathrm{Cu}_{2} \mathrm{~S}$.
Ans: Cu: 79.9%, S: 20.1%

- Sample Problem 9.4- Percent Composition

As some salt crystallize from a water solution, they bind water molecules in their crystal
structure. Sodium carbonate forms such a hydrate, in which 10 water molecules are present for every formula unit of sodium carbonate. Find the mass percentage of water in sodium carbonate decahydrate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \bullet 10 \mathrm{H}_{2} \mathrm{O}$, which has a MM of $286.14 \mathrm{~g} / \mathrm{mol}$.

Ans: $63.0 \% \mathrm{H}_{2} \mathrm{O}$
\square Practice
$\begin{array}{lll}\text { (1) Find the percentage composition of the following. (a) } \mathrm{PbCl}_{2} & \text { (b) } \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\end{array}$
(2) Find the mass percentage of water in $\mathrm{ZnSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$.
(3) Magnesium hydroxide is 54.87% oxygen by mass. How many grams of oxygen are in 175 g of the compound? How many mole of oxygen is this?
Ans: (1) $74.5 \% \mathrm{~Pb}, 25.5 \% \mathrm{Cl}$ (2) $43.9 \% \mathrm{H}_{2} \mathrm{O}$ (3) 96.0 g O

- Calculating Empirical Formulas
- Working example 78.1% B and $21.9 \% \mathrm{H}$
- Write elements involved in compound with $\mathrm{x}, \mathrm{y}, \mathrm{z}$, etc. as subscript variables.
$\square B_{x} H_{y}$
- From percentage composition, assume a 100 g sample so percentages become grams
78.1% B and $21.9 \% \mathrm{H}$
- Becomes 78.1g and 21.9g
- Convert the masses to moles
\square Only moles can be compared to moles, grams of a substance cannot be compared
- $78.1 \mathrm{~g} / 10.81 \mathrm{~g}=7.22 \mathrm{~mol} \mathrm{~B}$
- $21.9 \mathrm{~g} / 1.01=21.7 \mathrm{~mol} \mathrm{H}$
- Divide every mole by the smallest moles (solve for subscripts)
$\square \quad y=21.7 / 7.22=3.01$
$\square \mathrm{x}=7.22 / 7.22=1$
- For every 1 B there are 3 H
- Substitute for subscripts to determine empirical formula$\mathrm{B}_{1} \mathrm{H}_{3}$
- Erase any 1's placed as subscripts
- BH_{3}

Empirical mass (EM)

- Mass of the empirical formula

$$
\text { ○ } \mathrm{B}+3 \mathrm{H}=10.81+3(1.01)=13.84 \mathrm{amu}
$$

- Sample Problem 9.5 - Empirical Formula

Quantitative analysis shows that a compound contains 32.38% sodium, 22.65% sulfur, and 44.99% oxygen. Find the empirical formula of this compound.

- Sample Problem 9.6 - Empirical Formula

Analysis of a 10.150 g sample of a compound known to contain only phosphorus and oxygen indicates a phosphorus content of 4.433 g . What is the empirical formula of this compound?

Practice

(1) A compound is found to contain 63.52% iron and 36.48% sulfur. Find its empirical formula. Ans: FeS
(2) Find the empirical formula of a compound found to contain 26.56% potassium, 35.41% chromium, and the remainder oxygen.

Ans: $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(3) Analysis of 20.0 g of a compound containing only calcium and bromine indicates that 4.00 g of calcium are present. What is the empirical formula of the compound formed?

Ans: CaBr_{2}

- Calculation of Molecular Formula
- The ACTUAL formula for the molecular substance.

Find EF (empirical formula)

- BH_{3}

Calculate empirical mass.

- $\mathrm{B}+3 \mathrm{H}=10.81+3(1.01)=13.84 \mathrm{amu}$
- Molecular mass (given) is 27.67 amu

Calculate n

- $\mathrm{n}=\underline{\text { molecular mass }}($ or formula mass $)=\underline{27.67}=2$

Find molecular formula

- Multiply the subscripts on the empirical formula by n
- $\mathrm{n}(\mathrm{EF})$

$$
2\left(\mathrm{BH}_{3}\right)=\mathrm{B}_{2} \mathrm{H}_{6}
$$

- $\mathrm{B}_{2} \mathrm{H}_{6}$ is the molecular formula, the "true formula" for borane
- Sample Problem 9.7 - Molecular Formula

In Sample Problem 9.6, the empirical formula of a compound of phosphorus and oxygen was found to be $\mathrm{P}_{2} \mathrm{O}_{5}$. Experimentation shows that the $M M$ of this compound is $283.89 \mathrm{~g} / \mathrm{mol}$. What is the compound's molecular formula?

Ans: $\mathrm{P}_{4} \mathrm{O}_{10}$

Practice

(1) Determine the molecular formula of the compound with the empirical formula CH and a formula mass of 78.110amu.

Ans: $\mathrm{C}_{6} \mathrm{H}_{6}$ (benzene)
(2) A sample of a compound with a formula mass of 34.00 amu is found to consist of 0.44 g H and 6.92 g O . Find its molecular mass.

INTRODUCTION TO STOICHIOMETRY SECTION \#2

- Reaction stoichiometry

Mass relationships between reactants and products

- Problem Type 1
\square Given (X) and unknown (Y) are amounts in moles
- Plan

$$
\circ \quad \mathrm{X} \mathrm{~mol} \rightarrow \mathrm{Y} \text { mol }
$$

- Problem Type 2
\square Given (X) in moles and unknown in grams
- Plan

$$
\circ \quad \mathrm{X} \mathrm{~mol} \rightarrow \mathrm{Y} \mathrm{~mol} \rightarrow \mathrm{Y} \text { grams }
$$

- Problem Type 3
\square Given (x) in grams and unknown in moles
- Plan

$$
\circ \quad \mathrm{X} \text { grams } \rightarrow \mathrm{X} \mathrm{~mol} \rightarrow \mathrm{Y} \mathrm{~mol}
$$

- Problem Type 4

Given (X) in grams and unknown in grams

- Plan
- X grams $\rightarrow \mathrm{X} \mathrm{mol} \rightarrow \mathrm{Y} \mathrm{mol} \rightarrow \mathrm{Y}$ grams
- Mole Rations
\square Used to convert moles of X into moles of Y
- The coefficients of a balanced equation
- A conversion factor relating the amounts in moles of any two substances involved in a reaction

$$
\begin{array}{cl}
& \text { a } \mathrm{A} \quad \text { b B } \quad \text { c C } \\
- & 2 \mathrm{Al}_{2} \mathrm{O}_{3}(l)
\end{array} \rightarrow 4 \mathrm{Al}(s)+3 \mathrm{O}_{2}(g)
$$

Mole ratio

- $2: 4: 3 \rightarrow x: y: z$ or $a: b: c$

Ideal Stoichiometric Calculations Section \#3

- Intro
- Assume reactions occur in ideal conditions
\square All reactants are converted to products
- Ideal conditions very rarely occur in a laboratory
\square These reactions are considered theoretical due to the assumption of ideal conditions
- Thus calculations involving these reactions yield theoretical answers
- Used math to compute, then the amount is theoretical
\square Real world (experimental) work yields actual amounts
- So, we have theoretical and actual results
- One is done mathematically and the other experimentally
- Conversions of Moles X to Moles Y

Plan:
amount of given (mol) \rightarrow amount of unknown (mol)

- Sample Problem 9.8 - Mole to Mole Conversions

In a spacecraft, the carbon dioxide exhaled by astronauts can be removed by its reaction with lithium hydroxide, LiOH , according to the following chemical equation. $\mathrm{CO}_{2}(g)+2 \mathrm{LiOH}(s) \rightarrow$ $\mathrm{Li}_{2} \mathrm{CO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(l)$. How many moles of lithium hydroxide are required to react with 20 mol of CO_{2}, the average amount exhaled by a person each day? Ans: 40 mol LiOH
\square Practice
(1) Ammonia, NH_{3}, is widely used as a fertilizer and in many household cleaners. How many moles of ammonia are produced when 6 mol of hydrogen gas react with an excess of nitrogen gas?

Ans: $4 \mathrm{~mol} \mathrm{NH}_{3}$
(2) The decomposition of potassium chlorate, KClO_{3}, is used as a source of oxygen in the laboratory. How many moles of potassium chlorate are needed to produce 15 mol of oxygen?

Ans: 10. $\mathrm{mol} \mathrm{KClO}_{3}$

- Conversion of Moles X to Mass Y

Plan:
$M M$ of unknown (Y)
amount of given (mol) \rightarrow amount unknown (mol) \rightarrow mass of unknown (grams)

- Sample Problem 9.9 - Mole to Mass

In photosynthesis, plants use energy from the sun to produce glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, and oxygen from the reaction of carbon dioxide and water. What mass of glucose is produced when 3.00 mol of water react with carbon dioxide?

Ans: $90.1 \mathrm{~g} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

- Sample Problem 9.10 - Mole to Mass

What mass of carbon dioxide is needed to react with 3.00 mol of $\mathrm{H}_{2} \mathrm{O}$ in the photosynthesis reaction described above?

Ans: $132 \mathrm{~g} \mathrm{CO}_{2}$
\square Practice
(1) When magnesium burns in air, it combines with oxygen to form magnesium oxide according to the following equation. $\quad 2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
What mass of magnesium oxide is produced from 2.00 mol of magnesium?
Ans: 80.6 g MgO
(2) What mass of oxygen combines with 2.00 mol of magnesium in this same reaction?

Ans: $32.0 \mathrm{~g} \mathrm{O}_{2}$
(3) What mass of glucose can be produced from a photosynthesis reaction that occurs using $10 \mathrm{~mol} \mathrm{CO}_{2}$? $\quad 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \quad$ Ans: $300 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

- Conversion of Mass X to Moles Y

Plan:
mass of given (grams) \rightarrow amount given (mol) \rightarrow moles of unknown (mol)
$M M$ of X (given)

- Sample Problem 9.11 - Mass to Mole

The first step in the industrial manufacture of nitric acid is the catalytic oxidation of ammonia. $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$. The reaction is run using 824 g of NH_{3} and excess oxygen.
(a) How many moles of NO are formed?
Ans: 48.4 mol NO
(b) How many moles of $\mathrm{H}_{2} \mathrm{O}$ are formed?
Ans: $72.5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Practice
Oxygen was discovered by Joseph Priestly in 1774 when he heated mercury (II) oxide and it decomposed into its constituent elements.
(1) How many moles of mercury (II) oxide, HgO , are needed to produce 125 g of oxygen,
O_{2} ?
(2) How many moles of mercury are produced?

Ans: 7.81 moles HgO
Ans: 7.81 moles Hg

- Mass to Mass Calculations

Plan:

$$
M M \text { of unknown }(\mathrm{Y})
$$

mass given (grams) \rightarrow mole given (mol) \rightarrow mol unknown (mol) \rightarrow mass unknown (grams)
$M M$ of given (X)

- Sample Problem 9.12 - Mass to Mass

Tin (II) fluoride, SnF_{2}, is used in some toothpaste. It is made by the reaction of tin with hydrogen fluoride according to the following equation. $\mathrm{Sn}+2 \mathrm{HF} \rightarrow \mathrm{SnF}_{2}+\mathrm{H}_{2}$ How many grams of SnF_{2} are produced from the reaction of 30.00 g of HF with Sn ?

Ans: $117.5 \mathrm{~g} \mathrm{SnF}_{2}$
\square Practice
(1) Laughing gas (nitrous oxide, $\mathrm{N}_{2} \mathrm{O}$) is sometimes used as an anesthetic in dentistry. It is produced when ammonium nitrate is decomposed according to the following reaction. $\quad \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
(a) How many grams of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ are required to produce 33.0 g of $\mathrm{N}_{2} \mathrm{O}$? Ans: 60.0 g $\mathrm{NH}_{4} \mathrm{NO}_{3}$
(b) How many grams of water are produced in this reaction? Ans: $27.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
(2) When copper metal is added to silver nitrate in solution, silver metal and copper (II) nitrate are produced. What mass of silver is produced from $100 . \mathrm{g}$ of Cu ? Ans: 339 g
(3) What mass of aluminum is produced by the decomposition of 5.0 kg of $\mathrm{Al}_{2} \mathrm{O}_{3}$?

Ans: 2.6 kg

Limiting Reactant and Percent Yield Section \#4

- Limiting reactant/Excess reactant
- Limiting and excess reactant go hand in hand
\square If a reactant is not the limiting reactant then it is the excess reactant
- Limiting reactant (limiting reagent) (LR)
\square Limits the amt of products that can be produced.
$\square 100 \%$ of the limiting reactant will be used during the reaction
- Excess reactant (ER)
\square Is not used up in the reaction
- Always be a certain amt left over after reaction has gone to completion
\square Take the reaction between carbon and oxygen

$$
\mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)
$$

- 1 mole of C reacts with 1 mole of O_{2} to produce 1 mole of CO_{2}
- When we have equal amounts of the two reactants
- What is the LR when we have 5 mol of C and 10 mole of O_{2} ?

$$
\begin{gathered}
1 \mathrm{~mol} \mathrm{C}+1 \mathrm{~mol} \mathrm{O}_{2}=1 \mathrm{~mol} \mathrm{CO}_{2} \text { (using mole ratios from equation) } \\
5 \mathrm{~mol} \mathrm{C}+10 \mathrm{~mol} \mathrm{O}_{2}=5 \mathrm{~mol} \mathrm{CO}_{2}+5 \mathrm{~mol} \mathrm{O}_{2} \text { (not used) } \\
\text {-or- }
\end{gathered}
$$

5 C atoms $+10 \mathrm{O}_{2}$ molecules $\rightarrow 5 \mathrm{CO}_{2}$ molecules $+5 \mathrm{O}_{2}$ molecules
(LR)
(ER)
(unused ER)

- Sample Problem 9.13 - Limiting/Excess Reactant

Silicon dioxide (quartz) is usually quite unreactive but reacts readily with hydrogen fluoride according to the following equation. $\mathrm{SiO}_{2}(s)+4 \mathrm{HF}(g) \rightarrow \mathrm{SiF}_{4}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$ If 2.0 mol of HF are exposed to 4.5 mol of SiO_{2}, which is the limiting reactant?

Ans: HF
\square Practice
(1) Some rocket engines use a mixture of hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, and hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, as the propellant. The reaction is given by the following equation.

$$
\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

(a) Which is the LR in this reaction when 0.750 mol of $\mathrm{N}_{2} \mathrm{H}_{4}$ is mixed with 0.500 mol of $\mathrm{H}_{2} \mathrm{O}_{2}$?

Ans: $\mathrm{H}_{2} \mathrm{O}_{2}$
(b) How much of the ER, in moles, remains unchanged? Ans: $0.500 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}$
(c) How much of each product, in moles, is formed? Ans: $0.250 \mathrm{~mol} \mathrm{~N}_{2}, 1.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
(2) If 20.5 g of chlorine is reacted with 20.5 g of sodium, which reactant is in excess? How do you know? Ans: sodium is in excess because only 0.578 mol Na is needed.

- Sample Problem 9.14 - Limiting Reactant (LR)

The black oxide of iron, $\mathrm{Fe}_{3} \mathrm{O}_{4}$, occurs in nature as the mineral magnetite. This substance can also be made in the laboratory by the reaction between red-hot iron and steam according to the following equation. $3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
(a) When 36.0 g of $\mathrm{H}_{2} \mathrm{O}$ is mixed with 167 g of Fe , which is the LR? Ans: $\mathrm{H}_{2} \mathrm{O}$
(b) What mass of black iron oxide is produced?

Ans: $116 \mathrm{~g} \mathrm{Fe}_{3} \mathrm{O}_{4}$
(c) What mass of ER remains when the reaction is completed?

Ans: 83.2 g Fe remaining
Practice
(1) Zinc and sulfur react to form zinc sulfide according to the following reaction.

$$
8 \mathrm{Zn}(s)+\mathrm{S} 8(s) \rightarrow 8 \mathrm{ZnS}(s) .
$$

(a) If 2.00 mol of Zn are heated with 1.00 mol of S_{8}, identify the limiting reactant.

Ans: Zn
(b) How many moles of excess reactant remain?

Ans: $0.75 \mathrm{mo} \mathrm{S}_{8}$ remains
(c) How many moles of the product are formed?

Ans: 2.00 mol ZnS
(2) Carbon reacts with steam, $\mathrm{H}_{2} \mathrm{O}(g)$, at high temperatures to produce hydrogen and carbon monoxide.
(a) If 2.40 mol of carbon are exposed to 3.10 mol of steam, identify the limiting reactant.

Ans: carbon
(b) How many moles of product are formed?

Ans: $2.40 \mathrm{~mol} \mathrm{H}_{2}$ and 2.40 mol CO
(c) What mass of each product is formed?

Ans: $4.85 \mathrm{~g} \mathrm{H}_{2}$ and 67.2 gCO

- Percent Yield
- Theoretical yield

Calculated using the masses given within the problem

Home

- Assume 100% conversion of one of the reactants into product
- In an Ideal world

Life is messy and reactions do not have 100% conversion

- Actual yield
\square The actual conversion measured form an actual experiment not one done on Ideal world (see above under theoretical).
- $\%$ yield $=$ actual mass \quad x 100% theoretical mass
- Problem 9.15 - Percent Yield

Chlorobenzene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$, is used in the production of many important chemicals, such as aspirin, dyes, and disinfectants. One industrial method of preparing chlorobenzene is to react benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, with chlorine, as represented by the following equation.

$$
\mathrm{C}_{6} \mathrm{H}_{6}(l)+\mathrm{Cl}_{2}(g) \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(s)+\mathrm{HCl}(g)
$$

When 36.8 g of $\mathrm{C}_{6} \mathrm{H}_{6}$ react with an excess Cl_{2}, the actual yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ is 38.8 g . What is the percent yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$?

Ans: 73.2\%
Practice
(1) Methanol can be produced through the reaction of CO with H_{2} in the presence of a catalyst. $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$. If 75.0 g of CO reacts to produce 68.4 g $\mathrm{CH}_{3} \mathrm{OH}$, what is the percent yield of $\mathrm{CH}_{3} \mathrm{OH}$?

Ans: 79.8\%
(2) Aluminum reacts with excess copper (II) sulfate according to the reaction given below. If 1.85 g of Al reacts and the percent yield of Cu if 56.6%, what mass of Cu is produced? $\mathrm{Al}(s)+\mathrm{CuSO}_{4}(a q) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+\mathrm{Cu}(s)$ (unbalanced)

Ans: 3.70 g

