\qquad
Date: \qquad
Per\#: \qquad

MeasCalc

Topic \#2

Objectives

- Utilize the SI units used for measuring quantities in the laboratory.
- Define common prefixes used in science.
- Select the appropriate prefix to indicate a measurement in the metric system.
- Convert between different units using the factor-label method (dimensional analysis).
- Rearrange a basic algebraic equation.
- Utilize significant figures.
- Express numbers in scientific notation.
- Perform calculations utilizing numbers expressed in scientific notation.
- Utilize a calculator in the performance of mathematical calculations.
- Construct a graph from experimental data.
- Evaluate a graph.

Vocabulary

- accepted value
- accuracy
- conclusion
- conversion factor
- density
- derived unit
- dimensional analysis
- direct proportion (directly proportional)
- experimental control
- hypothesis
- inverse proportion (indirectly proportional)
- mass
- model
- natural law
- observation
- percentage error
- precision
- qualitative
- quality
- quantitative
- quantity
- scientific method
- scientific notation
- SI (unit)
- significant figure
- surroundings
- system
- theory
- variable
- volume
- weight

Formulas/Conversions/Diagrams/Drawings

- Basic scaffolding for dimensional analysis

Relationship between given unit and unknown unit: \#X=\#Y (ideal number, conversion factor)

From the above relationship (conversion factor), \#X is the denominator and \#Y is the numerator

- For example, convert 100 mL to L . Where $1000 \mathrm{~mL}=1.00 \mathrm{~L}$ (relationship, conversion factor).

$$
\begin{array}{l|l}
100 \mathrm{~m} \mathrm{~L} & 1.00 \mathrm{~L} \\
\hline 1000 \mathrm{pL}
\end{array}=\frac{(100)(1.00 \mathrm{~L})}{(1000)}=0.1 \mathrm{~L}
$$

- Density: $\mathrm{D}=\mathrm{mass} /$ volume $=\mathrm{m} / \mathrm{V}$ (ratio of mass to volume)
- $\%$ error $=$ value $_{\text {accepted }}-$ value $_{\text {experimental }} \times 100 \%$

value $_{\text {accepted }}$

- $\mathrm{y} / \mathrm{x}=k$ (direct proportion)
- $\quad \mathrm{y}=k \mathrm{x}$ (equation for a straight line that passes through the origin $(0,0)$)
- $\quad \mathrm{xy}=k$ (indirect(inverse) proportion)
- $\quad \mathrm{y}=k / \mathrm{x}$ (equation for a curved line (hyperbola))
- Density device

- \quad Stages in the scientific method

- Graphing

Mass	Volume	Slope

Graph data. Draw a best fit line. Label: x-axis, y-axis, independent variable, dependent variable, x unit, y unit, major intervals and title of graph.
Calculate the slope by taking two points and using the slope formula:

$$
m=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)
$$

