AMSAT CHEM 1H TOPIC\#2 Measurements/Calculations Notes

TABLE OF CONTENTS

1. Scientific Method
2. Measurements
3. Working with Measurements (Numbers)

Scientific Method Section\#1

- A logical approach to solving a problem.
- Make an observation
- Use your senses to obtain information
- Form a question from your observations
- Formulate a question about observations
- Form a hypothesis
- A tentative answer to your question
- A testable (no opinions) if/then or cause/effect statement about your observations and question
- Basis for making predictions
- Develop further experiments based on observations
- "Then" part is the prediction of the hypothesis
- If an appendix has no function, then we can live without it.

- Develop an experiment to test hypothesis
- Used to confirm/deny hypothesis
- Must be reproducible by peers
- Control
- Has a known result (outcome): Water freezes @ $0^{\circ} \mathrm{C}$
- Variable
- Aspect being tested: Water with dissolved salt freezes at \qquad ${ }^{\circ} \mathrm{C}$
- Summarize results from an experiment in a conclusion.
- Discussion of the confirmation/denial of hypothesis
- Leads to changes in hypothesis

Home

- After numerous experiments, the results may be summarized in a natural law
- A description of how nature behaves.
- Not a reason why.
- Gives a "big" picture from a collection of experiments and observations.
- Finally, a theory is developed to explain "why" nature behaves like described in a natural law.
- A broad generalization explaining a body of tested facts or phenomena
- Explains why nature behaves in the way described by the natural law.
- Model
- Explains how phenomena occur and how data or events are related
- Can be visual, verbal, or mathematical
- May become part of theory if it successfully explains facts/phenomena
- Using the theory, scientists form predictions on similar phenomena
- Experiments
- Using theory as basis for experiments
- Can reinforce or force an amendment to theory

Visual Concept: Scientific Method
Scientific Method

MEASUREMENTS SECTION\#2

- Observing and Collecting data
- Direct observation
- See with you own eyes
- Macro
- Large
- Colors on a leopard
- Micro
- Need use of an instrument
- Microscope
- Indirect observation
- Cannot see with own eyes
- Makeup of sun
- Interior of Earth
- Types of Observations
- Quantitative
- A measurement with a number a unit
- $24 \mathrm{~L}, 45.6 \mathrm{~m}$, etc.
- Qualitative
- A measurement using senses or general descriptions
- The sky is blue and the clouds are fluffy
- Sample Problem 1.1-Qualitative/Quantitative Observations Identify as qualitative (a) or quantitative (b).
(1) dirty water \qquad (2) 24in wide \qquad (3) 3.000 ng of U
(4) blue jeans \qquad

Visual Concept: Qualitative/Quantitative Data

- Observation vs. Inference

- When you observe you become aware using one of your five senses (smell, hear, taste, touch, or sight).
- A statement describing a fact.
- An inference is a mental judgment based on an observation.
- They require thought
- A statement based on your interpretation of the facts
- When you wake up in the morning, you observe dark clouds, you observe the cool and humid air, and observe puddles on the ground. You did not see rain but you inferred and decided it rained based on your observations.

Observations
The plant is extremely wilted.
The car stopped running.
The White Cox are leading their division.

Inferences
That plant is extremely wilted due to lack of water.
The car stopped running because it was out of gas. The White Cox are leading their division because they are playing well right now.

- System
- Specific portion of matter in a given region of space under investigation (study)
- Surroundings
- Everything outside of the system
- Quantities
- a magnitude, size, or amount
- Number plus unit
- No naked numbers (or people) in chemistry
- 24 L
- 3 taps
- What is wrong with 7 tall?
- SI units (Le Systeme International d' Unites)
- Based on Metric System
- Write seventy-five thousand as 75000 not 75,000

SI Prefixes				
Prefix	Unit Abbr	Exponential Factor	Meaning	Example
atto	a	10^{-18}	$1 / 1000000000000000000$	1 attometer (am) $=1 \times 10^{-18} \mathrm{~m}$
femto	f	10^{-15}	1/1000 000000000000	1 femtometer $(\mathrm{fm})=1 \times 10^{-15} \mathrm{~m}$
pico	p	10^{-12}	1/1000 000000000	1 picometer $(\mathrm{pm})=1 \times 10^{-12} \mathrm{~m}$
nano	n	10^{-9}	1/1 000000000	1 nanometer (nm) $=1 \times 10^{-9} \mathrm{~m}$
micro	μ (mu)	10^{-6}	1/1 000000	1 micrometer ($\mu \mathrm{m}$) $=1 \times 10^{-6} \mathrm{~m}$
milli	m	10^{-3}	1/1000	1 millmeter (mm) $=1 \times 10^{-3} \mathrm{~m}$
centi	c	10^{-2}	1/100	1 centimeter (cm) $=1 \times 10^{-2} \mathrm{~m}$
deci	d	10^{-1}	1/10	1 decimeter $(\mathbf{d m})=1 \times 10^{-1} \mathrm{~m}$
-	-	10^{0}	1	1 meter (m)
deca	da	10^{1}	10	1 decameter (dam) $=1 \times 10^{1} \mathrm{~m}$
hecto	h	10^{2}	100	1 hectometer (hm) $=\mathbf{1 \times 1 0}{ }^{\mathbf{2}} \mathrm{m}$
kilo	k	10^{3}	1000	1 kilometer (km) $=1 \times 10^{\mathbf{3}} \mathrm{m}$
mega	M	10^{6}	1000000	1 megameter (Mm) $=1 \times 10^{6} \mathrm{~m}$
giga	G	10^{9}	1000000000	1 gigameter $(\mathrm{Gm})=1 \times 10^{9} \mathrm{~m}$
tera	T	10^{12}	1000000000000	1 terameter (Tm) $=1 \times 10^{12} \mathrm{~m}$

- Base units
- Mass - kilogram, kg
- __g $=\ldots \quad \mathrm{kg}$
- 2.2 pounds (lbs) $=1 \mathrm{~kg}$
- Mass vs. weight
- Mass - amount of matter in an object
- Weight - gravity's effect on an object's mass
- Sample Problem 1.2 - Mass

Supply the missing number.
(1) ? $\mathrm{g}=2.3 \mathrm{~kg}$
(2) $345 \mathrm{~g}=? \mathrm{~kg}$

- Length - meter, m
- $\quad \mathrm{mm}=$ \qquad $\mathrm{cm}=$ \qquad $\mathrm{dm}=$ \qquad m
$(2.54 \mathrm{~cm}=1 \mathrm{inch}, 1.609 \mathrm{~km}=1 \mathrm{mile})$
- Sample Problem 1.3 - Length

Supply the missing number.
(1) $? \mathrm{~cm}=0.230 \mathrm{~m}$
(2) $345 \mathrm{~cm}=? \mathrm{~mm}$
(3) $? \mathrm{dm}=8.9 \mathrm{~m}$
(4) $12 \mathrm{dm}=? \mathrm{~cm}$
(5) $? \mathrm{~mm}=7.2 \mathrm{dm}$

- Time (t) - second, s or sec
- $60 \mathrm{~s}=1$ minute, 60 minutes $=1 \mathrm{hr}$, and $24 \mathrm{hr}=1$ day
- Sample Problem 1.4 - Time
(1) How many seconds in an hour?
(2) How many seconds in a day?
- Amount (n) - mole, mol (quantity)
- 1 mole of parts $=6.022 \times 10^{23}$ parts
- In chemistry, parts are atoms, ions, formula units, and molecules
- Sample Problem 1.5 - Amount
(1) How many moles in 1.2×10^{24} eggs?
(2) How many parts in 3.0 moles of bacon?
- Temperature (T) - Kelvin, K
- 0 K is called absolute zero
- Means at 0 K all motion ceases in matter
- No colder temperature exists
- Move up in temperature 1 K you also move up by $1^{\circ} \mathrm{C}$
- Same increment $\left(1 \mathrm{~K}=1^{\circ} \mathrm{C}\right)$
- Just different starting points
- Temperature is the measure of the average kinetic energy in a system
- Some particles are moving faster, some slower, and some average
- Kinetic energy (KE) is the energy of motion

> | | $\begin{array}{l}\text { E of a moving } \\ \text { baseball }\end{array}$ |
| :--- | :--- |
| \circ | $\begin{array}{l}\text { Potential energy (PE) is } \\ \text { the energy of relative }\end{array}$ |
| position | |
| | - $\begin{array}{l}\text { Chemical bonds } \\ \\ \\ \\ \\ \text { A boulder on a }\end{array}$ |

- Boiling point for water is $100^{\circ} \mathrm{C}(373 \mathrm{~K})$
- Freezing point for water is $0^{\circ} \mathrm{C}(273 \mathrm{~K})$
- Kelvin/Celsius conversion
- $\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$
- ${ }^{\circ} \mathrm{C}=\mathrm{K}-273.15$
- Celsius/Fahrenheit conversion
- ${ }^{\circ} \mathrm{F}=1.8\left({ }^{\circ} \mathrm{C}\right)+32$
- ${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8$

- Sample Problem 1.6-Temperature Supply the missing number.
(1) $30^{\circ} \mathrm{C}=$? K
(2) ? ${ }^{\circ} \mathrm{C}=323 \mathrm{~K}$
(3) $98.6^{\circ} \mathrm{F}=$? ${ }^{\circ} \mathrm{C}$
(4) $?^{\circ} \mathrm{F}=100^{\circ} \mathrm{C}$
- Derived units
- Created from multiplying or dividing base SI units
- Area $(l \times w) \quad 1 \mathrm{mx} 1 \mathrm{~m}=1 \mathrm{~m}^{2}$
- Usually measured in m^{2} or cm^{2}
- Sample Problem 1.7 - Area

How many cm^{2} in $1 \mathrm{~m}^{2}$? (ans:

Quantity	Quantity symbol	Unit	Unit abbreviation	Derivation
Area	A	square meter	m^{2}	$\mathrm{~m}^{3}$
Volume	V	cubic meter	$\frac{\mathrm{kg}}{\mathrm{m}^{3}}$	$\frac{\text { length } \times \text { width }}{} \times$ mass
Density	D	kilograms per cubic meter	$\frac{\text { volume }}{}$	
Molar mass	M	kilograms per mole	$\frac{\mathrm{kg}}{\mathrm{mol}}$	$\frac{\text { mass }}{\text { amount of substance }}$
Molar volume	V_{m}	cubic meters per mole	$\frac{\mathrm{m}^{3}}{\mathrm{~mol}}$	$\frac{\text { volume }}{\text { amount of substance }}$
Energy	E	joule	J	force \times length

- Volume ($1 \times \mathrm{wxh}$) $1 \mathrm{mx} 1 \mathrm{mx} 1 \mathrm{~m}=1 \mathrm{~m}^{3}$
- Amount of space occupied by an object
- Usually measured in liters (L) or milliliters (mL)
- Can be measured in cm^{3}
- $1 \mathrm{~L}=1000 \mathrm{~mL}=1000 \mathrm{~cm}^{3} ; 1 \mathrm{~mL}=1 \mathrm{~cm}^{3} ; 1 \mathrm{dm}^{3}=1 \mathrm{~L}$
- Sample Problem 1.8 - Volume
(1) How many cm^{3} in $1 \mathrm{~m}^{3}$?
(2) How many dm^{3} are in $1 \mathrm{~m}^{3}$?
Hint: start with a known relationship between centimeters and meters.
- Force $=\mathrm{mxa}=\mathrm{kg} \mathrm{x} \mathrm{m} / \mathrm{s}^{2}=$ Newton (N)
- A 1 kg mass accelerating @ $1 \mathrm{~m} / \mathrm{s}^{2}$ has a force of 1 N
- Pressure $=\mathrm{F} / \mathrm{A}=\mathrm{N} / \mathrm{m}^{2}=$ Pascal
- $\left(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}\right) / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{2}$
- Work $=$ force \times distance $=\left(\mathrm{kg} \mathrm{x} \mathrm{m} / \mathrm{s}^{2}\right) \cdot \mathrm{m}=\mathrm{kg} \mathrm{x} \mathrm{m}^{2} / \mathrm{s}^{2}$
- Energy $=\operatorname{Joule}(\mathrm{J})=\mathrm{kg} \mathrm{x} \mathrm{m}^{2} / \mathrm{s}^{2}$
- The capacity to do work or produce heat
- Forms of energy
- Kinetic energy
- KE - Energy of motion
- Potential energy
- PE - Energy possessed by object because of their position
- Measuring energy
- calorie is the amount of energy needed to raise 1 gram (g) of water by $1^{\circ} \mathrm{C}$
- $1 \mathrm{cal}=1 \mathrm{gx} 1^{\circ} \mathrm{C}, 1$ Calorie $=$ $1000 \mathrm{cal}=1 \mathrm{kcal}, 1 \mathrm{cal}=$ 4.184 J
- Law of Conservation of Energy

- In any process, E is neither created nor destroyed.
- Changes form
- Chemical to electrical
- Sample Problem 1.9 - Energy
(1) A student uses 30.J of energy putting books on a shelf in the classroom. Convert this amount of energy from joules to calories.
(ans: 7.2 cal)
(2) Suppose you use 135 cal of energy to perform a task. How many joules have you used?
(ans: 565J)
(3) The energy content of a small tomato is about 17 Cal . Convert this measurement to joules.
(ans: $7.1 \times 10^{4} \mathrm{~J}$)
- Heat
- The total amount of energy (E) in a system
- Can only measure a change (Δ) in E, not the actual total E
- Heat flows from hot objects to cold objects
- A hot highway melts ice cream, not an ice cream freezes a hot highway
- Types of heat transfer
- Radiant
- Through space w/o medium
- Infrared radiation - fire
- Convection
- In liquids
- Hot particles move away from heat replaced by colder particles until all is same temperature
- Conduction
- Transfer of heat from one object to another through direct contact Making measurements
- Uncertain for (2) reasons
- (1) Instruments are never free of flaws
- (2) Involve some estimation
- Final digit is estimated
- Estimation
- Digital display
- The final digit is the estimated digit
- Shows 24.62
- The 2 is an estimated digit
- Scale
- Graduated cylinder
- Read at bottom of meniscus
- The number you guess is the estimated digit
- Showing Uncertainty in a measurement
- The guessed number has uncertainty
- Show uncertainty by using a ($\pm 0.0 \mathrm{x}, \pm 0 . \mathrm{x}, \pm \mathrm{x}$, etc.)
- Sample Problem 1.10- Uncertainty
(1) Write 37.7 with the uncertainty.
(2) Write 32 with the uncertainty.
- Reliability in Measurements
- Precision
- A reliable measurement is one that gives you the same (or very similar) value again and again in the same conditions
- Set\#1:3.45cm, $3.50 \mathrm{~cm}, 3.40 \mathrm{~cm}$
- Set\#2: $3.44 \mathrm{~cm}, 3.42 \mathrm{~cm}, 3.43 \mathrm{~cm}$
- Which set of measurements is the most precise? \qquad
- Accuracy
- An accurate measurement is exactly or very close to the accepted value (standard) - $3.45 \mathrm{~cm}, 3.50 \mathrm{~cm}, 3.40 \mathrm{~cm}$
- Which value is the most accurate when the accepted value is 3.41 ? \qquad

Accuracy and Precision			
Trial \#1	1.00 g	0.99 g	1.00 g
Trial \#2	0.93 g	1.05 g	0.87 g
Trial \#3	0.94 g	0.93 g	0.95 g
Accepted value is $\mathbf{0 . 9 3 g}$			

- Sample Problem 1.11 - Accuracy and Precision

Using the chart above, which of the three trials is the most precise? Accurate? Precise and accurate?

- Dartboard Analogy
- Precise
- Hitting a spot on the dart board over and over
- Accurate
- Hitting the bullseye

a Dats within the bulls-eye mean high accuracy and high
precision.

b Darts clustered within a small area but far from the bulls-eye mean low accuracy and high precision.

- Accurate and precise
- Hitting the bulls-eye throw after throw

Visual Concept: Accuracy/Precision

- Percent error
- $\%$ error $=$ value $_{\text {accepted }}-$ value $_{\text {experimental* }} \times 100$ value ${ }_{\text {accepted }}$
*measured value obtained by experiment
$(+) \%$ error - accepted $>$ experimental
(-) \% error - accepted < experimental

- Sample Problem 1.12-Percent Error

A student measures the mass and volume of a substance and calculates its density as $1.40 \mathrm{~g} / \mathrm{mL}$. The correct, or accepted, value of the density is $1.30 \mathrm{~g} / \mathrm{mL}$. What is the percent error of the student's measurement?
(ans: -7.7\%)

- Practice
(1) What is the percent error for a mass measurement of 17.7 g , given that the correct value is 21.2 g ?
(2) A volume is measured experimentally as 4.26 mL . What is the percent error, given the correct value is 4.15 mL ?
(ans: -2.7\%)

Working with Measurements (Numbers) Section\#3

- Scientific Notation $\left(\mathrm{Mx} 10^{\mathrm{n}}\right)$
- Measurements > 999 and less than 0.001 need to be written in scientific notation
- 1000 as 1.000×10^{3}
- 0.005 as 5.0×10^{-3}
- Written with 1 number to the left of the decimal
- $2.0 \times 10^{3} \mathrm{~m}, 3.546 \times 10^{-7} \mathrm{~cm}$, and 8.90×10^{12} atoms
- When converting a standard number into scientific notation
- Moving decimal to left makes power on ten more positive
- 94000000×10^{0} transforms into $9.4 \times 10^{0+7}=9.4 \times 10^{7}$
- Moving decimal to right makes power on ten more negative
- 0.00000834×10^{0} transforms into $8.35 \times 10^{0-6}=8.35 \times 10^{-6}$
- Adding/subtracting numbers written in scientific notation
- Each numbers power on the ten must be the same
- $9.02 \times 10^{2}+5.69 \times 10^{1}+1.23 \times 10^{3}=$
- $9.02 \times 10^{2}+0.569 \times 10^{2}+12.3 \times 10^{2}=21.889 \times 10^{2}$
- Correctly written $=2.1889 \times 10^{3}$
- Multiplying/Division
- With scientific calculator
- Input first number using exponent button
- Input function (x or \div)
- Input second number using exponent button
- Example:
(1) $3.0 \times 10^{2} \times 5.0 \times 10^{3}=$?
(2) $6.0 \times 10^{4} \div 3.0 \times 10^{3}=$?
- Without scientific calculator
- Break number into two parts
$\frac{\# 1}{\frac{\# .0}{n}} \frac{\# 2}{3.0} 10^{2}$
\circ
$1^{\text {st }}$ part, the number in front of the (x)
- Multiply or divide these numbers
- $2^{\text {nd }}$ part, the ($\times 10^{z}$)
- Multiply/divide these numbers
- Multiply - add powers
- Divide - subtract denominator power from the numerator power
- Combine $1^{\text {st }}$ number and $2^{\text {nd }}$ number after the multiplication/division function
- Move decimal so ONLY 1 number is the left of the decimal point and adjust power on the 10
- Move decimal to the right
- Add a (1) to the power on the 10 for each move of the decimal
- Move decimal to the left
- Subtract (1) from the power on the 10 for each move of the decimal
- Example:
(1) $4.0 \times 10^{4} \div 2.0 \times 10^{5}=$?
(2) $1.5 \times 10^{-2} \times 2.0 \times 10^{6}=?$

Visual Concept: Scientific Notation

- Sample Problem 1.13 - Working with Scientific Notation
(1) Convert the following numbers into scientific notation.
(a) 34000
(b) 0.0004523
(c) 923890000
(d) 0.0000000034
(2) Solve the following problems without a calculator.
(a) $3.0 \times 10^{3}-4.0 \times 10^{2}=$
(c) $5.0 \times 10^{3} \times 4.0 \times 10^{9}=$
(b) $9.9 \times 10^{-3}+1.1 \times 10^{-2}=$
(d) $1.8 \times 10^{-2} \div 6.0 \times 10^{-4}=$
- Significant Figures (Digits)
- Significant figures in a measurement consist of all the digits known w/ certainty plus one final digit, which is somewhat uncertain or estimated
- Process for determining number of sig figs (Atlantic-Pacific rule)

1) Left side of number is the Pacific and the right side of the number is the Atlantic
2) Count all nonzero numbers, starting on Pacific side of number.
3) Does the number have a decimal point?

$$
\begin{aligned}
& \text { Yes - go to } 4 \\
& \text { No - go to } 5
\end{aligned}
$$

4) Count trailing zeros (Atlantic side of number)
5) Count zeros in between nonzero numbers

- Never count zeros on the pacific side of the number
- Do Sig Fig WS in Class (5minutes)
- Numbers written in scientific notation include only significant digits
- $2.0 \times 10^{3} \mathrm{~m}(2 \mathrm{~s} . \mathrm{f}), 3.546 \times 10^{-7} \mathrm{~cm}(4 \mathrm{~s} . \mathrm{f})$, and 8.90×10^{12} atoms ($3 \mathrm{~s} . \mathrm{f}$)

Visual Concept: Significant Figures

Visual Concept: Rules for Determining Significant Zeros
 How many sig figs are in each of the following measurements?
(a) 28.6 g
(b) $3440 . \mathrm{cm}$
(c) 910 m
(d) 0.04604 L
(e) 0.0067000 kg

- Practice
(1) Determine the number of significant figures in each of the following.
(a) 804.05 g
(d) 400 mL
(b) 0.0144030 km
(e) $30000 . \mathrm{cm}$
(c) 1002 m
(f) 0.000625000 kg
(2) Suppose the value "seven thousand centimeters" is reported to you. How should the number be expressed if it is intended to contain the following?
(a) 1 sig fig
(b) 4 sig fig
(c) 6 sig figs

Rounding Rules		
If the digit following the last digit to be retained is:	Then the last digit should:	Example (rounded to 3 sig figs)
Greater than 5	Be increased by 1	$42.68 \mathrm{~g} \rightarrow 42.7 \mathrm{~g}$
Less than 5	Stay the same	$17.32 \mathrm{~m} \rightarrow 17.3 \mathrm{~m}$
5, followed by nonzero digit(s)	Be increased by 1	$2.7851 \mathrm{~cm} \rightarrow 2.79 \mathrm{~cm}$
5 , not followed by nonzero digit(s), and preceded by an odd digit	Be increased by 1	$\begin{gathered} 4.635 \mathrm{~kg} \rightarrow 4.64 \mathrm{~kg} \\ \text { (because } 3 \text { is odd) } \end{gathered}$
5 , not followed by nonzero digit(s), and the preceding significant digit is even	Stay the same	$\begin{gathered} 78.65 \mathrm{~mL} \rightarrow 78.6 \mathrm{~mL} \\ \text { (because } 6 \text { is even) } \end{gathered}$

Visual Concept: Rules for Rounding

- Practice - Rounding Round the following.
(1) 0.105 to the hundredth
(3) 1055 to the tens
(2) 1.23 to the tenth
(4) 1.03855 to the hundredth
- Addition/Subtraction w/ Sig Figs
- The answer must have the same number of digits to the right of the decimal as the measurement $\mathrm{w} /$ the fewest places to the right of the decimal
- $25.1 \mathrm{~g}+2.03 \mathrm{~g}=27.13 \mathrm{~g}$
- Correctly written as 27.1 g (1 decimal place)
- Multiplication/Division
- Answer has the same number of sig figs as the data point w/ the smallest number of sig figs
- $3.05 \mathrm{~g} / 8.470 \mathrm{~mL}=0.360094451 \mathrm{~g} / \mathrm{mL}$
- Ideal numbers
- Used in conversions or are known to all
- Such as $1 \mathrm{~m}=100 \mathrm{~cm}$, density of water $(1.00 \mathrm{~g} / \mathrm{mL})$, etc.
- These numbers are NOT used to determine sig figs for an answer

Rules for Using Significant Figures in Calculations

1. In multiplication and division problems, the answer cannot have more significant figures than there are in the measurement with the smallest number of significant
figures. If a sequence of calculations is involved, do not round until the end.

$$
\begin{aligned}
& \begin{array}{l}
12.257 \mathrm{~m} \\
\times 1.162 \mathrm{~m} \leftarrow \text { four significant figures } \\
\times
\end{array} \\
& \hline 14.2426234 \mathrm{~m}^{2} \xrightarrow{\text { round off }} 14.24 \mathrm{~m}^{2}
\end{aligned}
$$

nu. Wht to the right of the decimal. When adding and subtracting you should not be concerned with the total number of significant figures in the values. You should be concerned only with the number of significant figures present to the right of the decimal point.

$$
\begin{aligned}
& 3.95 \mathrm{~g} \\
& 2.879 \mathrm{~g} \\
&+213.6 \mathrm{~g} \\
& \hline 220.429 \mathrm{~g} \xrightarrow{\text { round off }} 220.4 \mathrm{~g}
\end{aligned}
$$

2. In addition and subtraction of

 numbers, the result can be no more certain than the least certain number in the calculation. So, an answer cannot have more digits to the right of the decimal point than there are in the measurement with the smallestNotice that the answer 220.4 g has four significant figures, whereas one of the values, 3.95 g , has only three significant figures.
3. If a calculation has both addition (or subtraction) and multiplication (or division), round after each operation.

- Sample Problem 1.15 - Using Sig Figs in an Answer

Carry out the following calculations. Express each answer to the correct number of significant figures.
(a) $5.44 \mathrm{~m}-2.6103 \mathrm{~m}$
(b) $2.4 \mathrm{~g} / \mathrm{mL} \times 15.82 \mathrm{~mL}$

- Practice
(1) What is the sum of 2.009 g and 0.05681 g ?
(2) Calculate the quantity $87.3 \mathrm{~cm}-1.655 \mathrm{~cm}$.
(3) Calculate the area of a crystal surface that measures $1.34 \mu \mathrm{~m}$ by $0.7488 \mu \mathrm{~m}$.
(4) Polycarbonate plastic has a density of $1.2 \mathrm{~g} / \mathrm{cm}^{3}$. A photo frame is constructed from two 3.0 mm sheets of polycarbonate. Each sheet measures 28 cm by 22 cm . What is the mass of the photo frame?
- Dimensional Analysis
- Mathematical technique using conversion factors to solve problems using quantity sought $=$ quantity given x conversion factor
- Conversion factors
- Ratio derived from the equality between two different units
- Needed to convert from one unit to another unit

1. Identify the quantity and unit given and the unit that you want to convert to.
2. Using the equality that relates the two units, set up the conversion factor that cancels the given unit and leaves the unit that you want to convert to.
3. Multiply the given quantity by the conversion factor. Cancel units to verify that the units left are the ones you want for your answer.

- Sample Problem 1.16 - Dimensional analysis

Express a mass of 5.712 grams in milligrams and kilograms.

- Practice - Dimensional Analysis
(1) What are the (3) conversion factors between quarters and a dollar?
(2) Convert 46 quarters into dollars.
(3) Convert $250 . \mathrm{cm}$ to inches. (1 inch $=2.54 \mathrm{~cm}$)
(4) How many feet in 86 cm ?
(5) How many gallons in 39 L ? $(1 \mathrm{gal}=3.785 \mathrm{~L})$
(6) How many cm^{3} in 2.3 gal ?
(7) How many meters in 3.5 mi ? $(1 \mathrm{mi}=5280 \mathrm{ft})$

*Kilogram, the base unit for mass, does not appear in this list because it has a different set of conversion values ($1 \mathrm{~kg}=1000 \mathrm{~g}$).
- Practice
(1) Express a length of 16.45 m in centimeters and kilometers.(Ans: $1645 \mathrm{~cm}, 0.01645 \mathrm{~km})$
(2) Express a mass of 0.014 mg in grams.
(Ans: 0.000014 g)

- Density

- Physical property of matter, amount of matter in a given volume
- $D=\frac{\mathrm{m}}{V}$
- Write (2) other forms of this equation.
-
-
- Units (labels)
- $\mathrm{g} / \mathrm{cm}^{3}$ or g / mL (solids)
- g / mL (liquids)
- g/L (gases)
- Ratio between mass and volume
- relates the mass of a substance to a volume of $1 \mathrm{~cm}^{3}$ (solid), 1 mL (liquid), or 1 L (gas)
- Can be used in dimensional analysis as a conversion factor, density for water is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$, so $1.0 \mathrm{~g}=1 \mathrm{~cm}^{3}$

Visual Concept: Equation for Density

Densities of Some Familiar Materials

Solids	Density at $20^{\circ} \mathrm{C}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Density at $20^{\circ} \mathrm{C}(\mathrm{g} / \mathrm{mL})$	
cork	0.24^{*}	Liquids	0.67^{*}
butter	0.86	gasoline	0.791
ice	0.92^{\dagger}	kerosene	0.82
sucrose	1.59	turpentine	0.87
bone	1.85^{*}	water	0.998
diamond	3.26^{*}	sea water	$1.025^{* *}$
copper	8.92	milk	1.031^{*}
lead	11.35	mercury	13.6
t measured at $0^{\circ} \mathrm{C}$ 8typical density		88 measured at $15^{\circ} \mathrm{C}$	

Mass vs. Volume for Lead Samples

Mass and Volume Data
for Samples of Lead

Sample number	Mass (g)	Volume (mL)
$\mathbf{1}$	5.00	0.443
$\mathbf{2}$	15.0	1.33
$\mathbf{3}$	24.0	2.12
$\mathbf{4}$	52.0	4.60
$\mathbf{5}$	64.0	5.66
$\mathbf{6}$	81.0	7.17
$\mathbf{7}$	95.0	8.41
$\mathbf{8}$	101	8.94
$\mathbf{9}$	142	12.6
$\mathbf{1 0}$	153	13.5

- Practice - Density
(1) What is the density of 0.50 L of air with a mass of 0.65 g ?
(2) What is the mass of a $35 \mathrm{~cm}^{3}$ sample of aluminum? The density for aluminum is $2.70 \mathrm{~g} / \mathrm{cm}^{3}$?
(3) What is the volume occupied by $160 . \mathrm{g}$ of iron? The density of iron is $7.86 \mathrm{~g} / \mathrm{cm}^{3}$?
(4) Using the above data for lead, calculate the density for each of the data points. Calculate the average value for the densities.

1.
2. \qquad 3. \qquad 4. \qquad 5. \qquad 6. \qquad 7 \qquad 8. \qquad 9. \qquad 10. \qquad Average $=$ \qquad
(5) Pick two data points and find the slope of the line.
(6) Compare the average densities to the slope of the line.

- Sample Problem-1.17 - Density

A sample of aluminum metal has a mass of 8.4 g . The volume of the sample is $3.1 \mathrm{~cm}^{3}$. Calculate the density of aluminum.

- Practice
(1) What is the density of a block of marble that occupies $310 \mathrm{~cm}^{3}$ and has a mass of 853 g ?
(ans: $2.75 \mathrm{~g} / \mathrm{cm}^{3}$)
(2) Diamond has density of $3.26 \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of the diamond that has a volume of $0.350 \mathrm{~cm}^{3}$?
(ans: 1.14 g)
(3) What is the volume of a sample of liquid mercury that has a mass of 76.2 g , given that the density of mercury is $13.6 \mathrm{~g} / \mathrm{mL}$?
- Problem solving
- Analyze
- Givens and unknowns (unk) - use table
- Read problem first
- Circle given
- Box unk
- Plan route from given to unk
- Plan
- Formulas and chemical principles
- Rearrange formula for unk variable
- Determine unit on unk
- Decide on conversion factor to use in dimensional analysis
- Draw a picture when necessary
- Compute
- Substitute given variables into equation
- Give answer in correct number of sig figs and with unit
- Evaluate
- Use guesstimation (use simpler numbers rounded from original number)
- Correct units? Correct number of sig figs?
- Is answer reasonable considering given numbers?

- Sample Problem 1.18 - Problem Solving

Calculate the volume of a sample of aluminum that has a mass of 3.057 kg . The density of aluminum is $2.70 \mathrm{~g} / \mathrm{cm}^{3}$.
(ans: $1.13 \times 10^{3} \mathrm{~cm}^{3}$)

- Practice
(1) What is the volume of a sample of helium that has a mass of $1.73 \times 10^{-3} \mathrm{~g}$, given that the density is $0.17847 \mathrm{~g} / \mathrm{L}$?
(2) What is the density of a piece of metal that has a mass of $6.25 \times 10^{5} \mathrm{~g}$ and is 92.5 cm x 47.3 cmx 85.4 cm ?
(ans: $1.67 \mathrm{~g} / \mathrm{cm}^{3}$)
(3) How many millimeters are in 5.12×10^{5} kilometers?
(ans:)
(4) A clock gains 0.020 seconds per minute. How many seconds will the clock gain in exactly six months, assuming exactly 30 days per month? (ans: 5.2×10^{3} s)

Visual Concept: Direct and Inverse Proportions

- Direct proportions
- $x \alpha y$ - thumb rule, as x increases y increases
- $\mathrm{x}=\mathrm{ky} \quad \mathrm{k}$ is a constant, $\mathrm{k}=\mathrm{x} / \mathrm{y}$

Mass-Volume Data for Aluminum at $20^{\circ} \mathrm{C}$		
Mass (g)	Volume (cm^{3})	$\frac{m}{V}\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$
54.4	20.1	2.70
65.7	24.15	2.72
83.5	30.9	2.70
97.2	35.8	2.71
105.7	39.1	2.70

- Inverse proportions
- $\mathrm{x} \propto 1 / \mathrm{y}$ - thumb rule, as x increases, y decreases
- $x=k / y \quad k$ is a constant, $k=x y$

Pressure-Volume Data for Nitrogen at Constant Temperature		
Pressure (kPa)	Volume $\left(\mathrm{cm}^{\mathbf{3}}\right)$	$\mathrm{P} \times \mathrm{V}$
100	500	50000
150	333	49500
200	250	50000
250	200	50000
300	166	49800
350	143	50500
400	125	50000
450	110	49500

Bar Graph (Type of Metal vs. Melting Temperature) (Non-numerical Data)

Home

