\qquad

Gases Topic\#11

WS\#1: Pressure, Volume, and Temperature

(Show all work on separate sheet of paper for ALL assignments. No Work, No Credit)
Matching

1. ___A bicycle tire inflates when you pump air into a valve on one side.
a. compressibility
2. \qquad A car is supported on a "cushion of air."
b. has mass
_An air mattress springs back to its original shape after being pressed.
c. fills container

A balloon filled with air weighs more than an empty balloon.
d. exerts pressure
\qquad The color of a gas is uniform throughout the bottle containing it.
e. diffuses through other gases

Variables can be used more than once.
6. \qquad K
a. pressure
7. \qquad newtons per square meter
\qquad L
b. temperature
. \qquad pascal
10. \qquad moles
c. amount
11. \qquad kPa
12. atm
d. volume

T/F Correct if false.
13. Although air is a mixture of several gases, it behaves like a single gas.
14. Oxygen is diatomic, and, under similar conditions, its volume is twice that of monatomic helium.
15. Air bags are used as safety devices in cars because air cannot be compressed.
16. Most gases are made up of single atoms.
17. According to the kinetic-molecular theory, the collisions between gas particles are 100 percent elastic.
18. The pressure of a gas is simply a measure of the kinetic energy of the gas particles.
19. The volume of a gas is equal to the volume of its container.

Fill in the blank.
perfectly elastic / zero / weak / kinetic energy / no force / pressure / random motion / potential energy
20. The volume of gas particles themselves is assumed to be \qquad -.
21. Gas molecules are said to be in \qquad .
22. The collisions between gas particles are \qquad -.
23. The temperature of a gas is a measure of the average \qquad of the gas particles.
24. Gas particles exert \qquad on one another.

Problems

25. Convert the following pressures. $(1 \mathrm{~atm}=101.3 \mathrm{kPa}=101,300 \mathrm{~Pa}=760 \mathrm{torr}=760 \mathrm{mmHg}=14.7 \mathrm{psi})$
a. 4.45 atm to torr
e. $\quad 125 \mathrm{kPa}$ to atm
i. $120,000 \mathrm{~Pa}$ to atm
b. 2350 torr to atm f. 1.17atm to kPa
j. $\quad 2.35 \mathrm{~atm}$ to mmHg
26. $2.34 \times 10^{5} \mathrm{~Pa}$ to
c. 1043 mmHg to $\mathrm{kPa} \quad$ g. 790 torr to kPa
k. $\quad 856 \mathrm{mmHg}$ to atm
d. $\quad 120.1 \mathrm{kPa}$ to mmHg
h. $\quad 240 \mathrm{kPa}$ to torr
27. Convert the following volumes $\left(1000 \mathrm{~cm}^{3}=1000 \mathrm{~mL}=1 \mathrm{~L}=1 \mathrm{dm}^{3}\right)$
a. $\quad 353 \mathrm{ml}$ to L
b. $\quad 23.4 \mathrm{~L}$ to mL
c. $3.86 \mathrm{dm}^{3}$ to L
d. 456 mL to dm^{3}
e. $\quad 0.23 \mathrm{dm}^{3}$ to mL
f. $\quad 784 \mathrm{~mL}$ to dm^{3}
28. Convert the following temperatures. $\left(\mathrm{K}={ }^{\circ} \mathrm{C}+273\right)$
a. $\quad 273^{\circ} \mathrm{C}$ to K
b. $\quad 373 \mathrm{~K}$ to ${ }^{\circ} \mathrm{C}$
c. $32^{\circ} \mathrm{C}$ to K
d. $\quad 421 \mathrm{~K}$ to ${ }^{\circ} \mathrm{C}$
29. Solve for the unknown variable. n is the variable for moles.

$$
n=\frac{g r a m s_{-} o f f_{-} \text {substance }}{m o l a r_{-} m a s s_{-} o f_{-} s u b s \tan c e}=\frac{g}{M M}
$$

a) $n=3.2 \mathrm{~mol}, M M=32.07 \mathrm{~g} / \mathrm{mol}$, and $\mathrm{g}=$?
b) $n=0.245 \mathrm{~mol}, M M=$, and 38.1 g
c) $n=?, M M=44.01 \mathrm{~g} / \mathrm{mol}$, and $\mathrm{g}=54.00$
d) $n=0.0879 \mathrm{~mol}, M M=38.00 \mathrm{~g} / \mathrm{mol}$, and $? \mathrm{~g}$

Key: (25) (a) 3380 torr (b) 3.09 atm (c) 139.0 kPa (d) 901.0 mmHg (e) 1.23 atm (f) 119 kPa (g) 110 kPa (h) 1800 torr (i) 1.2 atm (j) 1790 mmHg (k) 1.13 atm (l) 1760 mmHg
(26) (a) 0.353 L (b) $23,400 \mathrm{~mL}$ (c) 3.86 L (d) $0.456 \mathrm{dm}^{3}$ (e) 230 mL (f) $0.784 \mathrm{dm}^{3}$
(27) (a) 546 K (b) $100 .{ }^{\circ} \mathrm{C}$ (c) 305 K (d) $148{ }^{\circ} \mathrm{C}$
(28) (a) $1.0 \times 10^{2} \mathrm{~g}$ (b) $156 \mathrm{~g} / \mathrm{mol}$ (c) 1.227 mol (d) 3.34 g

WS\#2: Dalton's Law and Mole Fraction

Dalton's Law states that the sum of the individual pressures of all the gases that make up a mixture of gases is equal to the total pressure. The partial pressure of each gas is equal to the mole fraction of each gas x total pressure.

$$
\boldsymbol{P}_{\mathrm{T}}=\boldsymbol{P}_{\mathbf{1}}+\boldsymbol{P}_{2}+\boldsymbol{P}_{3}+\ldots \text { and } \boldsymbol{P}_{\mathrm{T}}=\boldsymbol{P}_{\text {dry gas }+} \boldsymbol{P}_{\mathrm{H} 2 \mathrm{O}} \text { and } \boldsymbol{X}_{\mathrm{a}}=\boldsymbol{n}_{\mathrm{a}} / \boldsymbol{n}_{\mathrm{T}} \text { and }\left(\boldsymbol{X}_{\mathrm{a}}\right)\left(\boldsymbol{P}_{\mathrm{T}}\right)=\boldsymbol{P}_{\mathrm{a}}
$$

1. A $250 . \mathrm{mL}$ sample of O_{2} is collected over $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ and has a total pressure of 760.0 torr. What is the pressure of the dry gas alone?
(Ans: 736.0torr)
2. A 54.0 mL sample of O_{2} is collected over $\mathrm{H}_{2} \mathrm{O}$ at $23^{\circ} \mathrm{C}$ and has a total pressure of 770.0 torr. What is the pressure of the dry gas?
(Ans: 749.0torr)
3. A mixture of 2.00 mol of $\mathrm{H}_{2}, 3.00 \mathrm{~mol}$ of $\mathrm{NH}_{3}, 4.00 \mathrm{~mol}$ of CO_{2}, and 5.00 mol of N_{2} exerts a pressure of 800 .torr. (a) What is the n_{T} ? (b) Calculate the mole fraction for each gas. (c) What is the partial pressure, P_{a}, of each gas?
(Ans: 114torr H_{2}, 171 torr NH_{3}, 229torr CO_{2}, 286torr N_{2})
4. The partial pressure of F_{2} is 300 .torr in a mixture of gases where the total pressure is 1.00 atm . What is the mole fraction of F_{2} ?
(Ans: 0.395)

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Pressure $(\mathbf{k P a})$	Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Pressure $(\mathbf{k P a})$	Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Pressure $(\mathbf{k P a})$	Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Pressure $(\mathbf{k P a})$
0	0.6	18	2.1	26	3.4	50	12.3
5	0.9	20	2.3	27	3.6	60	19.9
8	1.1	21	2.5	28	3.8	70	31.2
10	1.2	22	2.6	29	4.0	80	47.3
12	1.4	23	2.8	30	4.2	90	70.1
14	1.6	24	3.0	35	5.6	100	101.3
16	1.8	25	3.2	40	7.4		

WS\#3: Boyles/Charles/Combined Gas Law

Matching

1. The pressure of a gas is inversely proportional to its volume.
a. Avogadro
2. _- T The sum of the partial pressures of gases in a mixture is equal to the total pressure of the mixture.
b. Charles
3. Equal volumes of gases contain equal numbers of particles.
c. Boyle
4. __ The volume of a gas is directly proportional to its temperature.
d. Dalton

The graphs below are "trend graphs" not necessarily the actual shape of the graph. Match relationship to appropiate graph.

5. \qquad the relationship between gas pressure and its temperature
6. \qquad the relationship between gas volume and its pressure
7. ___ t the relationship between gas temperature and its volume
8. __ t the relationship between gas volume and its molar mass
Determine whether the circumstance will result in an increase, a decrease, or no change.
9. If the temperature of a gas increases, the pressure of the gas will increase/decrease/not be affected.
10. If the molecular weight of a gas increases, the total volume of the gas will increase/decrease/not be affected.
11. If the temperature of a gas decreases, the pressure of the gas will increase/decrease/not be affected.

As a gas is compressed in a cylinder...
12. the distance between gas molecules will increase/decrease/not be affected.
13. the number of gas molecules will increase/decrease/not be affected.
14. its volume will increase/decrease/not be affected.
15. its pressure will increase/decrease/not be affected.
16. its density will increase/decrease/not be affected.
17. its mass will increase/decrease/not be affected.

Problems

Boyle's Law [$P_{1} V_{1}=P_{2} V_{2}$] [standard conditions (STP): $0^{\circ} \mathrm{C}(273 \mathrm{~K})$ and 1 atm]
18. Correct the following gas volumes from the initial conditions to the new conditions (assume temperature remains constant).
a. 100.0 mL oxygen at 10.50 kPa to 9.91 kPa
b. 50.0 mL hydrogen at 97.3 kPa to $101,000 \mathrm{~Pa}$ (Ans: 48.2 mL)
19. A flask containing 90.0 mL of hydrogen was collected under a pressure of 0.962 atm . At what pressure would the volume be 70.0 mL , assuming the temperature is kept constant? (Ans: 1.24atm)
20. A gas has a volume of 275 mL when measured at a pressure of 735 torr. If the temperature is held constant, what would the gas volume be at standard pressure? (Ans: 266 mL)
21. A gas has a volume of $5.0 \times 10^{4} \mathrm{~L}$ at standard pressure. Assuming no temperature change, what volume will the gas occupy?
a. If the pressure is doubled? (Ans: $2.5 \times 10^{4} \mathrm{~L}$)
c. If the original pressure is cut in half? (Ans:
b. If the pressure is tripled? (Ans: $1.7 \times 10^{4} \mathrm{~L}$)
$1.0 \times 10^{5} \mathrm{~L}$)
22. A gas is confined in a cylinder with a moveable piston at one end. When the volume of the cylinder is 760.0 mL the pressure of the gas is 937.8 mmHg . When the cylinder volume is reduced to $450 . \mathrm{mL}$, what is the pressure? (Ans: 1580 mmHg)
Charles' Law [$V_{1} / T_{1}=V_{2} / T_{2}$]
23. A gas has a volume of $1.00 \times 10^{4} \mathrm{~L}$ at standard temperature. Assuming no pressure change, what volume will the gas occupy?
a. If the Kelvin temperature is doubled? (Ans: $2.00 \times 10^{4} \mathrm{~L}$)
b. If the original Kelvin temperature is halved? (Ans: $5.0 \times 10^{3} \mathrm{~L}$)
24. Correct the following gas volumes from the initial conditions to the new conditions (assuming that the pressure remains constant).
a. $\quad 250.0 \mathrm{~mL}$ chlorine at $10^{\circ} \mathrm{C}$ to $60.0^{\circ} \mathrm{C}$
b. $\quad 75.0 \mathrm{~mL}$ hydrogen at $20.0^{\circ} \mathrm{C}$ to $-10.0^{\circ} \mathrm{C}$
(Ans: 67.3 mL
25. A gas occupies a volume of 560 mL at a temperature of $120 .{ }^{\circ} \mathrm{C}$. to what temperature must the gas be lowered, if it is to occupy 400.0 mL ? Assume a constant pressure. (Ans: $8^{\circ} \mathrm{C}, 281 \mathrm{~K}$)
26. What is the new temperature for $250 . \mathrm{mL}$ of a gas that has an initial temperature of $-10.6^{\circ} \mathrm{C}$ and a volume 28.7 mL ? (Ans: $-243^{\circ} \mathrm{C}, 30 . \mathrm{K}$)
Combined Gas Law $\left[\left(\mathrm{P}_{1} \mathrm{~V}_{1}\right) / \mathrm{T}_{1}=\left(\mathrm{P}_{2} \mathrm{~V}_{2}\right) / \mathrm{T}_{2}\right]\left[\mathrm{STP}=1 \mathrm{~atm}(101.3 \mathrm{kPa})\right.$ and $\left.0^{\circ} \mathrm{C}(273 \mathrm{~K})\right]$
27. Convert the following gas volumes to the new volumes using the combined gas law and new conditions.
a. $\quad 5.00 \times 10^{2} \mathrm{~mL}$ hydrogen at $20^{\circ} \mathrm{C}$ and 120 kPa to STP conditions (Ans: 552 mL)
b. $\quad 140 \mathrm{~mL}$ hydrogen at $15^{\circ} \mathrm{C}$ and 11.0 kPa to $40.0^{\circ} \mathrm{C}$ and 94.5 kPa (Ans: 18 mL)
28. A gas occupied 550.0 mL at a pressure of $9.95 \times 10^{4} \mathrm{~Pa}$ and a temperature of $21^{\circ} \mathrm{C}$. Several days later it was measured at a pressure of $9.78 \times 10^{4} \mathrm{~Pa}$ and a temperature of $15^{\circ} \mathrm{C}$. What volume does the gas occupy under these new conditions? (Ans: 548mL)
29. The following gases are collected over water at the given temperatures. Using the table for water partial pressures below, calculate the volume occupied by the dry gas at standard conditions.
a. $200 . \mathrm{mL} \mathrm{O}_{2}$ at $15^{\circ} \mathrm{C}$ and 786.2 mmHg (Ans: 192 mL) b. 325 mL neon at $25^{\circ} \mathrm{C}$ and 98.6 kPa (Ans: 280.mL)
30. A 47.0 mL volume of nitrogen gas collected over water at a temperature of $18^{\circ} \mathrm{C}$ and a pressure of 98.5 kPa . What volume will the gas occupy at standard conditions? (Ans: 42.0 mL)

Vapor Pressure of Water

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Pressure (kPa)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Pressure (kPa)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Pressure (kPa)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Pressure (kPa)
0	0.6	18	2.1	26	3.4	50	12.3
5	0.9	20	2.3	27	3.6	60	19.9
8	1.1	21	2.5	28	3.8	70	31.2
10	1.2	22	2.6	29	4.0	80	47.3
12	1.4	23	2.8	30	4.2	90	70.1
14	1.6	24	3.0	35	5.6	100	101.3
16	1.8	25	3.2	40	7.4		

WS\#4: Molar Volume

Molar Volume [1 mol (of any gas at STP) $=22.4 \mathrm{~L}$] and [STP is standard temperature $\left(0^{\circ} \mathrm{C}\right)$ and pressure $(1 \mathrm{~atm})$]
All chemical equations must be balanced.

1. Find the mass of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ required to produce 2.66 L of carbon dioxide gas at STP from the reaction.
$\mathrm{C}_{6} \mathrm{H}_{6}(l)+\mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(g)$
(Ans: $1.55 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6}$)
2. How many liters of oxygen are necessary for the combustion of 277 g of carbon monoxide, assuming that the reaction occurs at STP? $\quad \mathrm{CO}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
(Ans: 111 $\mathrm{L} \mathrm{O}_{2}$)
3. Find the mass of aluminum required to produce 4.72 L of hydrogen gas at STP from the following reaction.

$$
\mathrm{Al}(s)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(s)+\mathrm{H}_{2}(g) \quad(\mathrm{Ans}: 3.79 \mathrm{~g} \mathrm{Al})
$$

4. How many liters of hydrogen are produced if 225 g of iron reacts with hydrochloric acid, assuming that the reaction occurs at STP? $\mathrm{Fe}(s)+\mathrm{HCl}(a q) \rightarrow \mathrm{FeCl}_{2}(a q)+\mathrm{H}_{2}(g) \quad$ (Ans: 90.2L H2)
5. Find the mass of S_{8} required to produce 2.47 L of sulfur dioxide gas at STP from the following equation.

$$
\mathrm{S}_{8}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{2}(g)
$$

(Ans: $3.54 \mathrm{~g} \mathrm{~S}_{8}$)
6. Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ burns in oxygen to produce carbon dioxide and water vapor. What volume of carbon dioxide is produced when 2.8L of oxygen are consumed? $\quad \mathrm{C}_{3} \mathrm{H}_{8}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \quad$ (Ans: 1.7L CO ${ }_{2}$)
7. The compound TNT (trinitrotoluene) decomposes explosively into carbon, carbon monoxide, hydrogen, and nitrogen. What volume of hydrogen and nitrogen are produced if 5.8 L of CO is produced?

$$
\left.\mathrm{C}_{7} \mathrm{H}_{5}\left(\mathrm{NO}_{2}\right)_{3}(s) \rightarrow \mathrm{C}(s)+\mathrm{CO}(g)+\mathrm{H}_{2}(g)+\mathrm{N}_{2}(g) \quad \text { (Ans: } 2.4 \mathrm{~L} \mathrm{H}_{2} / 1.4 \mathrm{~L} \mathrm{~N}_{2}\right)
$$

8. Nitroglycerin decomposes explosively to produce carbon dioxide, water, nitrogen, and oxygen. What volumes of nitrogen and oxygen are produced if 4.3 L of carbon dioxide is produced?

$$
\left.\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}(l) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{O}_{2}(g)+\mathrm{N}_{2}(g) \text { (Ans: 2.2L } \mathrm{N}_{2} / 0.36 \mathrm{~L} \mathrm{O}_{2}\right)
$$

WS\#5: Ideal Gas Law/Gas Density/Graham's Law

Complete sentences

1. Standard temperature is \qquad degrees Celsius.
Absolute zero is \qquad Kelvin.
2. The volume of 1 mole of any gas at STP is \qquad kPa .
3. Standard pressure is equal to \qquad
4. If the pressure of 2 L of a gas at STP doubles, its new volume would be \qquad L.

T of F Correct if false.
6. ___ Real gases behave like ideal gases except at very high temperatures.
7. ___ The gas constant, R, is equal to 0.0821 when the pressure is expressed in kilopascals.
8. ___ As more gas particles are added to a container, there are fewer collisions because the particles don't go as far.
9. ___ The number of moles of a gas is inversely proportional to its volume at STP.
10. ___ Real gases behave like ideal gases except at very high pressures.
11. ___ At a constant temperature, the pressure exerted by one mole of a gas decreases if the volume available is increased.
12. The ideal gas equation will only give correct values if the temperature is expressed in degrees.
13. ___ One mole of oxygen at 760 mmHg and $0^{\circ} \mathrm{C}$ occupies a volume of one L .
14. ___ Gas density depends on molar mass.
15. ___ Under identical conditions, helium would probably leak out of a balloon faster than oxygen.

Fill in the blank.
molar mass / CFCs / ultraviolet light / helium / density / hydrogen / decrease / increase / heavier / effusion
16. The density of a gas depends on the \qquad of the gas.
17. The density of a gas will \qquad with increasing temperature.
18. The safest "lifting" gas used in today's lighter-than-air aircraft is
19. The most useful property of ozone in the stratosphere is its ability to absorb \qquad .
20. A hot-air balloon uses heat to change the \qquad of a given volume of air.
21. The slow escape of a gas through a porous membrane is an example of \qquad .
22. The density of a gas will \qquad with increasing pressure.
23. The Hindenburg tragedy revealed the dangers of using \qquad in commercial aircraft.
24. Chemical reactions that destroy ozone in the stratosphere are thought to be caused by \qquad .
25. Lighter gases diffuse faster than gases.

Problems

Ideal Gas Law $[P V=n R T]$ and $\boldsymbol{R}=0.0821(\mathrm{~atm}), 8.31(\mathrm{kPa})$, or $62.35(\mathrm{mmHg} /$ torr $)$
Use the Ideal Gas Law to solve the following problems. Volumes must be in liters (L).
26. How many moles of oxygen will occupy a volume of 2.5 L at 1.2 atm and $25^{\circ} \mathrm{C}$? (Ans: $0.12 \mathrm{moles} \mathrm{O}_{2}$)
27. What volume will 2.0 mol of nitrogen occupy at 720 torr and $20 .{ }^{\circ} \mathrm{C}$? (Ans: 51 L)
28. What pressure will be exerted by 25 g of CO_{2} at a temperature of $25^{\circ} \mathrm{C}$ and a volume of 500 mL ? (Ans: 28atm)
29. At what temperature will 5.00 g of Cl_{2} exert a pressure of 900 .torr at a volume of 750 mL ? (Ans: 153 K)
30. How many moles of nitrogen gas will occupy a volume of 347 mL at 6680 torr and $27^{\circ} \mathrm{C}$? (Ans: 0.124 mol)
31. What volume will 454 g (11b) of hydrogen occupy at 1.05 atm and $25^{\circ} \mathrm{C}$? (Ans: 5240 L)
32. Find the number of grams of CO_{2} that exert a pressure of 785 torr at a volume of 32.5 L and a temperature of $32^{\circ} \mathrm{C}$? (Ans: 59.0 g)
33. An elemental gas has a mass of 10.3 g . If the volume is 58.4 L and the pressure is 758 torr at a temperature of $2.5^{\circ} \mathrm{C}$, what is the gas? (Ans: $M M=4.00 \mathrm{~g} / \mathrm{mol}, \mathrm{He}$)
Gas Density $[d=\mathrm{m} / V=(M M \mathrm{x} P) /(R \mathrm{x} T)]$
34. What is the density of NH_{3} at 800. torr and $25^{\circ} \mathrm{C}$? (Ans: $0.73 \mathrm{~g} / \mathrm{L}$)
35. If a density of a gas is $1.2 \mathrm{~g} / \mathrm{L}$ at 745 torr and $20 .{ }^{\circ} \mathrm{C}$, what is its molecular mass? (Ans: $29 \mathrm{~g} / \mathrm{mol}$)
36. At $28^{\circ} \mathrm{C}$ and $0.974 \mathrm{~atm}, 1.00 \mathrm{~L}$ of gas has a mass of 5.16 g . What is the molar mass of this gas? (Ans: $131 \mathrm{~g} / \mathrm{mol}$)
37. What is the molar mass of a gas if 0.427 g of the gas occupies a volume of 125 mL at $20.0^{\circ} \mathrm{C}$ and 0.98 atm ? (Ans: $84 \mathrm{~g} / \mathrm{mol}$)
38. What is the density of a sample of ammonia gas, NH_{3}, if the pressure is 0.928 atm and the temperature is $63.0^{\circ} \mathrm{C}$? (Ans: $0.573 \mathrm{~g} / \mathrm{L})$
39. The density of a gas was found to be $2.0 \mathrm{~g} / \mathrm{L}$ at 1.50 atm and $27^{\circ} \mathrm{C}$. What is the molar mass of the gas? (Ans: $33 \mathrm{~g} / \mathrm{mol}$)
40. What is the density of argon gas, Ar , at a pressure of 551 torr and a temperature of $25^{\circ} \mathrm{C}$? (Ans: $1.18 \mathrm{~g} / \mathrm{L}$)

Graham's Law [rate $/{ }_{\mathrm{a}} / \mathrm{rate}_{\mathrm{b}}=\sqrt{ } \mathrm{MM}_{\mathrm{b}} / \mathrm{MM}_{\mathrm{a}}$]
Graham's Law says that a gas will effuse at a rate that is inversely proportional to the square root of its molecular mass, MM.
41. If the molecular speed of a gas increase, its rate of diffusion will increase / decrease / not be affected.

Solve the following problems.
42. Under the same conditions of temperature and pressure, how many times faster will hydrogen effuse compared to carbon dioxide? (Ans: 4.67 times faster than CO_{2})
43. If the carbon dioxide in Problem 42 takes 32 sec to effuse, how long will the hydrogen take? (Ans: 6.8 sec)
44. What is the relative rate of diffusion of NH_{3} compared to He ? Does NH_{3} effuse faster or slower than He ? (Ans: 0.48 to 1 , slower by about 50%)
45. If the He in Problem 3 takes 20 sec to effuse, how long will NH_{3} take? (Ans: 42 sec)
46. An unknown gas diffuses 0.25 times as fast as He . What is the molecular mass of the unknown gas? (Ans: $64 \mathrm{~g} / \mathrm{mol}$)

WS\#6: Gas Stoichiometry [Use molar volume for gas at STP and $P V=n R T$ for gases NOT at STP]

1. What volume of chlorine is required to produce 25.4 g of copper (II) chloride at $18^{\circ} \mathrm{C}$ and 2.13 atm ? (Ans: $2.12 \mathrm{~L} \mathrm{Cl}_{2}$)
$\mathrm{Cu}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{~s})$
2. Hydrochloric acid and zinc react to produce zinc (II) chloride and hydrogen gas. At 778 mmHg and $25^{\circ} \mathrm{C}$, how many grams of zinc are required to produce 25.2 L of hydrogen gas? (Ans: 68.9 g Zn)

$$
2 \mathrm{HCl}(a q)+\mathrm{Zn}(s) \rightarrow \mathrm{ZnCl}_{2}(a q)+\mathrm{H}_{2}(g)
$$

3. If 5.45 g of potassium chlorate decompose, how many liters of oxygen gas are given off at 1.58 atm and $32^{\circ} \mathrm{C}$? (Ans: $1.06 \mathrm{~L} \mathrm{O}_{2}$) $2 \mathrm{KClO}_{3}(s) \rightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)$
4. When aluminum is burned in 15.0 L of oxygen at 97.3 kPa and $21^{\circ} \mathrm{C}$, how many grams of aluminum oxide are formed? (Ans: $40.6 \mathrm{gAl}_{2} \mathrm{O}_{3}$)
$4 \mathrm{Al}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(s)$
5. If 12.8 g of CaCO_{3} decomposes at $38^{\circ} \mathrm{C}$ and 0.96 atm, how many dm^{3} of CO_{2} are formed in addition to CaO ? (Ans: 3.4 L of O_{2}) $\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
6. What mass of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is required to produce $150 \mathrm{~cm}^{3}$ of carbon dioxide at 102 kPa and $23^{\circ} \mathrm{C}$? (Ans: $5.60 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$)

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CH}_{3} \mathrm{COOH}(a q)+2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

