Name: \qquad

Atom Topic\#4
 Mole

WS\#10: Trick or Treat

For the mole worksheets, you MUST show work on a separate sheet of paper with correct worksheet title. Determine the molar mass of each compound in questions 1-6 include label.

1. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
2. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
3. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
4. $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
5. $\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
6. $\mathrm{Ru}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
7. How many moles are in 25 grams of NaCl ?
8. Determine the mass of 2.5 moles of NaCl .
9. How many moles are in 125 grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
10. Determine the mass of 0.50 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Mole Relationships*

Mole Relationships*					
Substance	Moles		Mass		Number of Particles
C	1 mol C	=	$\underline{12.01 \mathrm{~g}}$	=	6.022×10^{23} atoms C
K^{+}	$1 \mathrm{~mol} \mathrm{~K}{ }^{+}$		39.10 g		$6.022 \times 10{ }^{23}$ ions K^{+}
CO_{2}	$1 \mathrm{~mol} \mathrm{CO}_{2}$		44.01 g		6.022×10^{23} molecules CO_{2}
NaCl	1 mol NaCl		58.44 g		6.022×10^{23} formula units NaCl
N_{2}	$1 \mathrm{~mol} \mathrm{~N}_{2}$		28.02 g		6.022×10^{23} molecules N_{2}
N	1 mol N		14.01 g		6.022×10^{23} atoms N
$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{10}$	$1 \mathrm{~mol} \mathrm{C} \mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{10}$		330.33 g		$6.022 \times 10{ }^{23}$ molecules $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{10}$
*If on	put an equal sign		een each	hip,	e gets a line of equivalencies.

WS\#11: Headless Horseman

Solve the following for the number of atoms (molecules), moles or grams.

1. A chemist has a jar containing 388.2 g of iron filings. How many moles of iron does the jar contain? (Ans: 6.951 mol Fe)
2. A student needs 0.366 mol of Zn for a reaction. What mass of Zn in grams should the students obtain? (Ans: 23.9 g Zn)
3. How many moles of Li are there in $1.204 \times 10^{24} \mathrm{Li}$ atoms? (Ans: 2.00 mol Li)
4. How many boron atoms are there in 2.00 g of B ? (Ans: 1.11×10^{23} atoms B)
5. Calculate the mass of the following number of atoms:
a. 6.022×10^{24} atoms of tantalum (Ans: $1.810 \times 10^{3} \mathrm{~g}$)
b. 3.01×10^{21} atoms of cobalt (Ans: 0.295 g)
6. Calculate the mass of each of the following quantities:
a. 8.25×10^{22} molecules of BrF_{5} (Ans: 23.9 g)
b. 5.00×10^{21} formula units of $\mathrm{Al}(\mathrm{OH})_{3}$ (Ans: 0.63 g)
7. Calculate the number of molecules or formula units in each of the following masses:
a. 0.272 g of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ (Ans: 8.91×10^{20} f.u)
b. 260 mg of $\mathrm{CH}_{2} \mathrm{CHCN}$ (Ans: 2.95×10^{21} molecules)
8. Calculate the number of ions in 3.00 mol K . (Ans: 1.81×10^{24} ions)
9. Calculate the mass of 1.56×10^{26} ions of Ca^{2+}. (Ans: $1.01 \times 10^{4} \mathrm{~g}$)
10. A scientist has 50.0 grams of penicillin-G, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$. How many molecules of penicillin-G does the scientist have? (Ans: 9.00×10^{22} molecules)
11. 0.354 moles of iron (II) ferricyanide, $\mathrm{Fe}_{3}\left(\mathrm{Fe}(\mathrm{CN})_{6}\right)_{2}$, are produced in a reaction. How many grams were produced? (Ans: 209g)

off the mark

© Mark Parisi, Perm
by Mark Parisi
off the mark com by Mark Parisi

Off the mark. com by Mark Parisi

Mark Parisi, Permission required for use.

off the mark.com by Mark Parisi

