AMSAT CHEM 1H TOPIC#4 Atom - Nuclear Chemistry Notes

TABLE OF CONTENTS

- 1. <u>Radioactivity</u>
- 2. Nuclear Stability
- 3. Type of Radioactivity/Nuclear Reactions

RADIOACTIVITY SECTION #1

- Henri Becquerel
 - Discovered radioactivity
 - Spontaneous emission of radiation from an element
 - Placed uranium sample on photographic plate by accident
 - When developed showed rough outline of sample

- Marie Sklodowska Curie and husband Pierre
 - Worked with Becquerel
 - $\circ \quad \text{Discovered radium and polonium}$
- Radioactivity
 - Fundamental changes to atom
 - Chemical and physical properties change
- Ernest Rutherford
 - Placed radioactive sample between two charged plates
 - Some radiation deflected towards negative plate
 - Alpha radiation
 - Some radiation deflected towards positive plate
 - Beta radiation
 - Gamma discovered later
 - Not affected by charged plates

NUCLEAR STABILITY SECTION #2

- Nuclear reactions
 - Change the composition of the nucleus
 - Results in a new element
 - Three types of radiation
 - 🗆 Alpha
 - Helium nucleus
 - ${}^{4}_{2}\text{He}^{2+}$ (or just ${}^{4}_{2}\text{He}$)
 - 🗆 Beta
 - High speed electron from nucleus
 - ${}^{1}_{0}n^{0} \rightarrow {}^{1}_{1}p^{+} + {}^{0}_{-1}e^{-}$
 - Increases the atomic number of the parent atom by 1
 - 🗆 Gamma
 - High energy electromagnetic wave (light)
 - o Nucleons
 - \Box The protons and neutrons in the nucleus
 - □ Nuclide
 - Atom in a nuclear chemistry
 - Stable nuclei
 - \Box Not radioactive
 - □ Neutrons are "glue" holding nucleus together
 - Strong nuclear force
 - □ Elements 1-20
 - Almost equal numbers of neutrons and protons
 - Unstable nuclei
 - \Box Atomic number exceeds 83
 - Radioactive
 - No number of neutrons can hold the nucleus together
 - \Box Too few neutrons
 - Emit beta radiation
 - Rule (Band of stability)
 - □ Nuclides with more/less neutrons than most common stable isotope are unstable

Type of Radioactive Decay/Nuclear Reactions Section #3

- Three types
 - o Alpha
 - \Box ⁴₂He²⁺ (helium nucleus) or ⁴₂ α
 - \Box Symbol: α
 - \Box Charge: +2
 - □ Penetrating power: low, stopped by paper

- □ Source: nucleus splits into two nuclei, one of which is the alpha particle
- o Beta
 - \Box ⁰-1e or ⁰-1 β
 - \Box Symbol: β
 - \Box Charge: -1
 - □ Penetrating power: medium, stopped by heavy clothing
 - □ Source: neutron in nucleus breaks down into a proton and a high speed electron
 - ${}^{1}_{0}n \rightarrow {}^{1}_{+1}p + {}^{0}_{-1}e$
- o Gamma
 - $\Box \quad ^{0}_{0}\gamma$
 - \Box Symbol: γ
 - \Box Charge: 0
 - Penetrating power:
 high, 6 inches of lead
 or 6 feet of concrete

Penetrating Power of Radiation

Effect of Whole body Exposure to a Single Dose of Radiation

Dose (rem)	Probable effect	
0–25	no observable effect	
25–50	slight decrease in white blood cell count	
50–100	marked decrease in white blood cell count	
100–200	nausea, loss of hair	
200–500	ulcers, internal bleeding	
> 500	death	

Units of Radioactive Measurement

Radioactive Nuclide Emissions

Туре	Symbol	Charge	Mass (amu)
Alpha particle	⁴ ₂ He	2+	4.001 5062
Beta particle	$^{0}_{-1}\beta$	1–	0.000 5486
Positron	$^{0}_{+1}\beta$	1+	0.000 5486
Gamma ray	γ	0	0

Units	Measurements	
Curie (C)	radioactive decay	
Becquerel (Bq)	radioactive decay	
Roentgens (R)	exposure to ionizing radiation	
Rad (rad)	energy absorption caused by ionizing radiation	
Rem (rem)	biological effect of the absorbed dose in humans	

- o Radioactive decay
 - □ Decay by emission of one or more of the three types of radiation (alpha, beta, gamma)
 - Geiger-Muller counters
 - Detect radiation
- Half-life $(t_{1/2})$
 - □ Time required for half the atoms of a radioactive element (nuclide) to decay.

Potassium

Calcium

- $\begin{tabular}{ll} $$n_{1/2}$ = time of decay/t_{1/2}$ or if the measure is a fraction of the initial amount then use fraction to determine the number of half-lives the material has gone through. \end{tabular}$
- $\square \quad \text{mass}_{\text{F}} = (\frac{1}{2})^{\text{t}}(\text{mass}_{\text{I}})$
- <u>Sample Problem 3.3</u> Half-life Phosphorus-32 has a half-life of

14.3 days. How many

milligrams of phosphorus-32 remain after 57.2

days if you start with 4.0mg of the isotope? Ans: 0.25mg

Ans: 0.251

Practice

- (1) The half-life of polonium-210 is 138.4 days. How many milligrams of polonium-210 remain after 415.2 days if you start with 2.0mg of the isotope? (Ans: 0.25mg)
- (2) Assuming a half-life of 1599 years, how many years will be needed for the decay of 15/16 of a given amount of radium-226?

Half-lives for some Radioactive Isotopes					
Isotope	Half-life	Radiation emitted	Isotope formed		
Carbon-14	5.715×10^3 y	β-, γ	nitrogen-14		
Iodine-131	8.02 days	β-, γ	xenon-131		
Potassium-40	$1.28 \times 10^9 \text{ y}$	β ⁺ , γ	argon-40		
Radon-222	3.82 days	α, γ	polonium-218		
Radium-226	$1.60 \times 10^3 \text{ y}$	α, γ	radon-222		
Thorium-230	$7.54 imes 10^4 ext{ y}$	α, γ	radium-226		
Thorium-234	24.10 days	β-, γ	protactinium-234		
Uranium-235	7.04×10^8 y	α, γ	thorium-231		
Uranium-238	$4.47 \times 10^9 \text{ y}$	α, γ	thorium-234		
Plutonium-239	$2.41 \times 10^4 \text{ y}$	α, γ	uranium-235		

Ans: 6396 years

- (3) The half-life of radon-222 is 3.824 days. After what time will one-fourth of a given amount of radon remain? Ans: 7.648 days
- (4) The half-life of cobalt-60 is 10.47 min. How many milligrams of cobalt-60 remain after 104.7min if you start with 10.0mg? Ans: 0.00977mg
- (5) A sample contains 4.0mg of uranium-238. After 4.46x10⁹ years, the sample will contain
 2.0mg of uranium-238. What is the half-life of the sample? Ans: 4.46x10⁹ years
- (6) A sample contains 16mg of polonium-218. After 12min, the sample will contain 1.0mg of polonium-218. What is the half-life of polonium-218? Ans: 3.0min

<u>Home</u>

- Decay Series
 - o A series of radioactive isotopes produced by successive radioactive decay until a stable nuclide is
 - formed.

- Nuclear Equation (decay reaction)
 - Mass number and atomic numbers are equal on both sides
 - \Box Sum of reactants = sum of products
 - Reactants (parent nuclide) produce products (daughter nuclide)
 - \Box Alpha decay
 - Mass number decreases by 4 and atomic number decreases by 2

◦
$${}^{263}_{106}$$
Sg → ${}^{259}_{104}$ Rf + ${}^{4}_{2}$ He (or ${}^{4}_{2}\alpha$)
□ 263 = 259 + 4
□ 106 = 104 + 2

• Beta decay

- Mass number stays the same while atomic number increases by 1
- $^{131}{}_{53}I \rightarrow {}^{131}{}_{54}Xe + {}^{0}{}_{-1}e (or {}^{0}{}_{-1}β)$ □ 131 = 131 + 0□ 53 = 54 - 1

Fission induction of

neutrons can lead to

uranium-235 by bombardment with

a chain reaction when a critical mass

of uranium-235 is

present.

• Sample Problem 3.4 – Balancing Nuclear Reactions

$$5)^{43}{}_{19}K \rightarrow {}^{43}{}_{20}Ca + ___$$

$$6)^{233}{}_{92}U \rightarrow {}^{229}{}_{90}Th + ___$$

$$7)^{11}{}_{6}C + __ \rightarrow {}^{11}{}_{5}B$$

$$8)^{13}{}_{7}N \rightarrow {}^{0}{}_{+1}\beta + __$$

$$210$$

- (9) Write the nuclear equation for the release of an alpha particle by ${}^{210}_{84}$ Po.
- (10) Write the nuclear equation for the release of a beta particle by ${}^{210}_{82}$ Pb.
- Nuclear reactions
 - o Fission
 - Very heavy nucleus splits into more stable nuclei of intermediate mass
 - □ Chain reaction
 - A reaction where a product of one reaction starts another

reaction

- Neutron emission
- Produces daughter nuclei

6

- \Box Nuclear reactors (Power Plant)
 - Use fission to generate electricity

- Heat from nuclear reaction turns water into steam and moves a turbine
- o Fusion
 - □ Light-mass nuclei combine to form a heavier nuclei
 - More energy than fission reaction
 - Reaction that fuels the sun

$$\circ \quad {}^{1}_{1}H + {}^{1}_{1}H + {}^{1}_{1}H + {}^{1}_{1}H \rightarrow {}^{4}_{2}He + energy$$

- \Box Energy comes from the equation $E = mc^2$
 - Mass is converted into energy
 - Einstein

<u>Home</u>