AMSAT CHEM 1H TOPIC\#4
 Atom - Mole Notes

Relating Mass to Number of Atoms

- The Mole (mol)
- SI unit for amount
- A dozen is an amount
- 12 of anything
- A gross is an amount
- A dozen dozen of anything (144)
- The amount of a substance (particle) that contains as many particles as there are atoms in 12 g of carbon-12.
- We do not usually order 12 or 24 ears of corn, we order a dozen or two dozen
- Chemists wants 1 mol or 2 mol of a substance

The Mole Visual

- Avogadro's Number
- Italian scientist, Amedeo Avogadro
- 6.022×10^{23} particles of anything in one 1 mole
- 6.022×10^{23} parts $=1$ mole
- Relationship between parts and mole
- If every person on Earth (5 billion people) worked to count the atoms in 1 mole of an element, and if each person counted continuously at a rate of 1 atom per second, it would take about 4 million yrs for all the atoms to be counted.

Avogadro's Number Visual

- Formula mass (FM)
- The sum of all the relative atomic masses in a compound
- Measured in amu
- $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{array}{ll}
\circ & 2 \mathrm{H}+\mathrm{O}=\mathrm{FM} \\
\circ & 2(1.01)+16.00=18.02 \mathrm{amu}
\end{array}
$$

- Molar Mass (MM)
- The mass of 1 mole of a pure substance
- Element, or compound
- Gram formula mass (GFM) (same as molar mass)
- The mass in grams of 1 mole of a substance based on the formula
- Element
- Equal to the amu of the atom with a label of grams $/ \mathrm{mol}(\mathrm{g} / \mathrm{mol})$
- $\mathrm{Li} \rightarrow 6.94 \mathrm{amu}=6.94 \mathrm{~g} / \mathrm{mol}$
- $\mathrm{Hg} \rightarrow 200.59 \mathrm{amu}=200.59 \mathrm{~g} / \mathrm{mol}$
- Compound
- Equal to the sum of all of the atoms comprising the compound with a label of $\mathrm{g} / \mathrm{mol}$
- Multiply mass of atom by subscript
- Subscript outside of parenthesis, multiply through to each atom within
- $\mathrm{H}_{2} \mathrm{O}$
- $2 \mathrm{H}+\mathrm{O}=M M($ or $G F M)$
- $2(1.01)+16.00=18.02 \mathrm{~g} / \mathrm{mol}$
- $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
- $3 \mathrm{Mg}+2 \mathrm{P}+8 \mathrm{O}=M M$
- $3(24.31)+2(30.97)+8(16.00)=262.87 \mathrm{~g} / \mathrm{mol}$

Molar Mass Visual

- Sample Problem 3.5 - Molar Mass

Determine the molar mass of each of the following.
(1) CaCl_{2}
(2) Au
(3) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(4) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
(5) $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{10}$
(6) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{P}$

Solving Mole Problems

Determining the Mass from the Amount in Moles

- Grams/Moles Conversions
- Use (\#grams = 1 mole) relationship
- Given: grams Unk: moles
- Divide by $M M$ (or set up conversion factor of $1 \mathrm{~mol} /$ grams)

- Given: moles Unk: grams
- Multiply by $M M$ (or set up conversion factor of grams $/ 1 \mathrm{~mol}$)

- Sample Problem 3.6 - Mole/Grams Conversions

What is the mass in grams of 3.50 mol of the element, Cu ? Ans: 222 g Cu

Practice

(1) What is the mass in grams of 0.375 mol of the element K ?
(2) What is the mass in grams of 2.51 mol of the compound glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?

Ans: 14.7 g K
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

- Sample Problem 3.7 - Grams/Mole Conversions

A chemist produced 11.9 g of Al . How many moles of Al were produced?

Practice

(1) How many moles of Ca , are in 5.00 g of Ca ?
(2) How many moles of calcium nitrate, $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$, are in 50.0 g ?

- Moles/Parts Conversions
- Use ($1 \mathrm{~mol}=6.022 \times 10^{23}$ parts $)$ relationship
- Parts
- Ions, molecules, formula units (f.u.), or atoms
- Given: moles Unk: parts
- Multiply by Avogadro's number and divide by 1 mol
- 2.00 mqle He $\quad 6.022 \times 10^{23}$ atoms He $\quad=1.20 \times 10^{24}$ atoms He
- Given: parts Unk: moles
- Multiply by 1 mol and divide by Avogadro's number
- 1.80×10^{24} atoms $\mathrm{He} \left\lvert\, \frac{1 \mathrm{~mol} \mathrm{He}}{6.022 \times 10^{23} \text { atoms Ae }}=3.00 \mathrm{~mol} \mathrm{He}\right.$
- Sample Problem 3.8 - Parts/Moles Conversions

How many moles of Ag are in 3.01×10^{23} atoms of Ag ?
Ans: 0.500 mol Ag
Practice
How many moles of NaCl are in 4.23×10^{23} formula units of NaCl ? Ans: 0.702 mol NaCl

- Sample Problem 3.9 - Moles/Parts Conversions

How many atoms of Al , are in 2.75 mol of Al ? Ans: 1.66×10^{24} atomsAl

Practice

How many molecules of $\mathrm{CH}_{2} \mathrm{O}$ are in 0.928 mol of $\mathrm{CH}_{2} \mathrm{O}$?
Ans: 5.59×10^{23} molecules

- Grams/Parts Conversions
- Use ($\mathrm{MM}=6.022 \times 10^{23}$ parts) relationship
- Given: mass Unk: parts
- Multiply by Avogadro's number and divide by $M M$
- $4.00 \mathrm{He} \left\lvert\, \begin{aligned} & 6.022 \times 10^{23} \text { atoms } \\ & 4.00 \mathrm{~g}\end{aligned} \quad=6.022 \times 10^{23}\right.$ atoms He
- Given: parts Unk: mass
- Multiply by $M M$ and divide by Avogadro's number
- 1.20×10^{24} atohns He $\quad 4.00 \mathrm{~g}, \quad$| | 6.022×10^{23} atoms |
| :--- | :---: |$\quad .00 \mathrm{~g} \mathrm{He}$
- Sample Problem $\mathbf{3 . 1 0}$ - Parts/Grams Conversions

What is the mass in grams of 1.20×10^{8} atoms of Cu ? Ans: $1.27 \times 10^{-14} \mathrm{gCu}$
Practice
What is the mass in grams of 9.65×10^{25} molecules of $\mathrm{H}_{2} \mathrm{O}$? Ans: 2.89×10^{3} grams

- Sample Problem $\mathbf{3 . 1 1}$ - Grams/Parts Conversions

How many atoms of S are in 4.00 g of S ?
Ans: 7.51×10^{22} atoms

Practice

How many formula units are in 35.5 g of MgCl_{2} ?
Ans: 2.25×10^{23} f.u.'s

Home

