AP CHEM TOPIC\#10
 Structure (ATOMIC) NOTES

TABLE OF CONTENTS

1. Electromagnetic Radiation
2. The Nature of Matter
3. The Atomic Spectrum of Hydrogen
4. The Bohr Model
5. The Quantum Mechanical Model of the Atom
a. The Physical Meaning of a Wave Function
6. Quantum Numbers
7. Orbital Shapes and Energies
8. Electron Spin and the Pauli Exclusion Principle
9. Polyelectronic Atoms
10. The History of the Periodic Table
11. The Aufbua Principle and the Periodic Table
12. Periodic Trends in Atomic Properties
a. Ionization Energy
b. Electron Affinity
c. Atomic Radius
13. The Properties of a Group: The Alkali Metals
a. Information Obtained in the Periodic Table
b. The Alkali Metals

ELECTROMAGNETIC RADIATION SECTION \#1

- One of the means E travels through space
- All EM (electromagnetic) waves travel at the speed of light
- Waves have three primary characteristics
- Wavelength

Symbol: λ (lower case lambda)
\square Label: meters
\square The distance between two consecutive peaks or troughs in a wave

- Frequency
\square Symbol: v (lower case nu)
\square Label: $1 / \mathrm{sec}$ or Hz (Hertz)
\square Number of waves (cycles) per second
- Speed
\square Light: $c=2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Label: m/s
- Speed of light equation

○ $\mathrm{c}=\lambda v$
λ (lambda) must be in meters when used in equation

- Sample Exercise \#1 - Frequency of Electromagnetic Radiation

The brilliant colors seen in fireworks are due to the emission of light with wavelengths around 650 nm when strontium salts such as $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ and SrCO_{3} are heated. Calculate the frequency of red light of wavelength 650 nm .
(Ans: $4.61 \times 10^{14} \mathrm{~Hz}$)

The Nature of Matter Section \#2

- Max Planck
- Energy gained/lost in whole number multiples of $h v$
$\square h$ is Planck's constant
- $6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Energy can be quantized (packets)

- Packet called a quantum
- Sample Exercise \#2 - The Energy of a Photon

The blue color in fireworks is often achieved by heating copper (I) chloride (CuCl) to about $1200^{\circ} \mathrm{C}$. Then the compound emits blue light having a wavelength of 450 nm . What is the increment of energy (the quantum) that is emitted at $4.50 \times 10^{2} \mathrm{~nm}$ by CuCl ? (Ans: $4.41 \times 10^{-19} \mathrm{~J}$)

- Albert Einstein
- Proposed EM radiation is quantized
\square Stream of particles called "photons"
- $\mathrm{E}_{\text {photon }}=h v=\frac{h c}{\lambda}$
- $E=m c^{2}$

Energy has mass

- By substitution, $m=\underline{h}$
λc
- Arthur Compton
- Experiment

Collisions between x-rays and electrons

- Showed photons do exhibit apparent mass
- No rest mass (classical sense)
- Only in relative

Discovered neutron

- Summary of work by Einstein and Planck
- Energy - quantized - discrete units called quanta
- Dual nature of lightWave
\square
Stream of photons
- Louis de Broglie
- Equation used to calculate the wavelength of a particle
$\square \lambda=h / m v$
- Sample Exercise \#3 - Calculations of Wavelength

Compare the wavelength for an electron ($\mathrm{m}=9.11 \times 10^{-31} \mathrm{~kg}$) traveling at a speed of $1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$ with that for a ball ($\mathrm{m}=0.10 \mathrm{~kg}$) traveling at $35 \mathrm{~m} / \mathrm{s}$. (Ans: $\lambda_{\mathrm{e}}=7.27 \times 10^{-11} \mathrm{~m}, \lambda_{\mathrm{b}}=1.9 \times 10^{-34} \mathrm{~m}$)

Note the λ for the ball is very short while the λ for the electron is on the same order as the spacing between the atoms in a typical crystal.

- Why is this important?
- To prove, shoot electrons at a nickel crystal, observed a diffraction pattern (wave property)
- Matter obeys, but λ way too small to test

All matter exhibits both particulate and wave properties

The Atomic Structure of Hydrogen Section \#3

- Continuous spectrum
- White light passed through a prism

Breaks light into representative colors

- Hydrogen emission spectrum
- Line spectrum

Certain lines of light at specific wavelengths/frequencies/energies
\square Allows only certain energies for the electron in an hydrogen atom

- Quantized
- $\Delta E=h v=h c / \lambda$

The Bohr Model Section \#4

- Quantum model for hydrogen
- E moves around nucleus in discrete orbits
- $E=-2.178 \times 10^{-18} \mathrm{~J}\left(Z^{2} / n^{2}\right), n$ integer and Z is nuclear charge
$\square(-)$ sign means E of electron bound to nucleus is lower than at an infinite range
- $\Delta E=E_{\text {(of final state) })}-E_{\text {(of initial state) }}$
- Sample Exercise \#4 - Energy Quantization in Hydrogen

Calculate the E required to excite the hydrogen electron from level $n=1$ to level $n=2$. Also calculate the wavelength of light that must be absorbed by a hydrogen atom in its ground state to reach this excited state.
(Ans: $1.216 \times 10^{-7} \mathrm{~m}$)

- Two important points about Bohr model:

1. Correctly fits the quantized energy levels of the hydrogen atom and postulates only allowed circular orbits for electron.
2. When electron is at an infinite distance from the nucleus, energy state is zero (zero-energy state). As the electron becomes more bound to the nucleus (closer) the energy becomes more negative in relation to zero-energy state. In other words, the closer the electron is brought to the nucleus the more E is released from system.

- General equation for the electron moving one level ($n_{\text {initial }}$) to another level ($n_{\text {final }}$)

$$
\Delta E=E_{\text {final }}-E_{\text {initial }}=-2.178 \times 10^{-18} \mathrm{~J}\left(1 / \mathrm{n}_{\mathrm{f}}^{2}-1 / \mathrm{n}_{\mathrm{i}}^{2}\right)
$$

- Sample Exercise \#5 - Electron Energies

Calculate the E required to remove an electron from a hydrogen atom in its ground state.
(Ans: $2.178 \times 10^{-18} \mathrm{~J}$)

- Ultimately, the Bohr model only works for hydrogen, but is significant because it showed the observed quantization of E in atoms could be explained using simple assumptions.

The Quantum Mechanical View of the Atom Section \#5

- Werner Heisenberg (1901-1976)
- Heisenberg Uncertainty Principle
\square Fundamental limitation to just how precisely we can know both the position and momentum of a particle at a given time.
- If we measure where it is we will not know for certain where it will go.
\square On the quantum level, any method of observation will change the system.
- Louis de Broglie (1892-1987)
- Electron exhibits wave properties
- Erwin Schrodinger (1887-1961)
- Treated electron as a standing wave
- Orbits with whole number of wavelengths, standing wave will fit
- Orbits with destructive interference are not allowed
- Wave function (ψ) - function of the coordinates x, y, and, z of the electron in 3D space
\square A specific wave function is called an orbital
\square Electron density (probability) - 90% within a certain region of space
\square Picture an orbital as a 3-D electron density map
- The Physical Meaning of a Wave Function
- The square of the wave function indicates the probability of finding an electron near a particular point in space.

Differentiates between two positions

- Determines which position is most likely to find the electron
- Gives no information concerning when the electron will be at either position or how it moves between positions.

Vagueness consistent with Heisenberg Uncertainty principle
Represented as a probability distribution

- Uses color intensity to indicate the probability value near a given point in space.
- Electron density map

Electron density same as electron probability

- Atomic orbital

Orbital size

- The radius of a sphere that encloses 90% of the total electron probability

Quantum Numbers Section \#6

- n - principal quantum number (energy level)

$$
\text { - } 1,2,3,4,5,6 \text {, and } 7
$$

- Rows on a periodic table
- Size and energy of the orbital
- As $\mathrm{n} \uparrow$'s, orbital becomes larger, e^{-}spends more time father away from nucleus, and higher energy (because e^{-}is les tightly bound by nucleus)
- $\quad l$ - angular momentum number (shape of orbital)
- sometimes called a subshell
- Integers from 0 to $n-1$ for each value of n
- For $l=0 \quad s$ orbital
- For $l=1 \quad p$ orbital
- For $l=2 \quad d$ orbital
- For $l=3 \quad f$ orbital
- $m_{l}-$ magnetic quantum number (orientation of orbital in space)
- Integral values of l to $-l$
- Sample Exercise \#6 - Electron Subshells

For the quantum level $n=5$, determine the number of allowed subshells (different values of l), and give the designation of each. (Answer: $5(s, p, d, f$, and g)

Orbital Shapes and Energies Section \#7

- s-orbitals
- spherical shaped and increase in size as n increases
\square single orbital
$\square \quad 3 s>2 s>1 s$
- p-orbital
- dumbbell shaped (two lobes separated by a region of zero probability (node)
\square three orbitals
\square start with $n=2$
- labeled according to $x y z$ coordinates
- $2 p_{x}$ centered around x-axis

Surface area of orbital increase when n increases

- d-orbital
- start with $n=3$, no $2 d$ or $1 d$
\square five orbitals
- f-orbital
- start with $n=4$
seven orbitals
- For the hydrogen atom, all orbitals with the same value for n have the same energy

Degenerate

- Ground state - lowest E state
- Excited state - any E state higher than ground state
- A summary of the hydrogen atom
\square In the quantum (wave) model, the electron is viewed as a standing wave. This representation leads to a series of wave functions (orbitals) that describe the possible energies and spatial distributions available for electrons.
\square In agreement with the Heisenberg Uncertainty Principle, the model cannot specify the detailed electron motions. Instead, the square of the wave function represents the probability distribution of the electron in that orbital. This allows us to picture orbitals in terms of probability distributions, or electron density maps.
\square The size of an orbital is arbitrarily defined as the surface that contains 90% of the total electron probability.
\square The hydrogen atom has many types of orbitals. In ground state, the single electron resides in the $1 s$ orbital. The electron can be excited to higher-energy orbitals if energy is put into the atom.

Electron Spin and the Pauli Principle Section \#8

- Fourth quantum number $\left(m_{s}\right)$
- Samuel Goudsmit and George Uhlenbeck
- Needed to account for the emission spectra of atoms
\square Indicated a magnetic moment
- Two spins
- Spin quantum number, m_{s}
$\square+1 / 2$ and $-1 / 2$
- Wolfgang Pauli (1900-1958)
\square In a given atom, no two electrons can have the same 4 quantum numbers (n, l, m_{l}, and m_{s}) or two electrons with the same spin cannot occupy the same orbital
- Two electrons per orbital with opposite spins

Pauli exclusion principle

Polyelectronic Atoms Section \#9

- Atoms with more than 1 electron
- Consider helium
- Three energy contributions
(1) KE of moving electrons
(2) PE due to attraction between electrons and nucleus
(3) PE due to repulsions between electrons
- Can be described in terms of the quantum mechanical model
- On the other hand, the Schrodinger wave equation cannot be solved exactly
- Difficulty in dealing with electron-electron repulsion
- Due to the inability to determine the pathway of electrons
- Cannot calculate the repulsions exactly
- Called electron correlation problem
- All polyelectric atoms
- Use approximation
- Treat each electron as if it were moving in a field of charge that is the result of the nuclear attraction and the average repulsions of all the other electrons
- e.g. - sodium atom
- Outermost electron
- Attracted to nucleus
- Repulsions from inner 10 electrons
- Net effect, electron not held as tightly
- Shielded (screened) from nucleus by inner electrons
- This picture polyelectric atoms leads to hydrogen like orbitals for these atoms
- All orbitals in a principal quantum number are not of the same energy (unlike H)
- $E_{n s}<E_{n p}<E_{n d}<E_{n f}$
- $4 s<4 p<4 d<4 f$
- Electrons prefer the order $s, p, d, \& f$
- Why?
- Probability profiles show s electrons penetrate shield more effectively than p, d, or f electrons

(a)

(b)

Copyright © 2009 Pearson Prentice Hall, Inc.

Copyright © 2009 Pearson Prentice Hall, Inc.

This figure shows the variation in effective nuclear charge, $Z_{\text {eff }}$, as felt by the innermost electrons, those in the $1 s$ subshell (red circles), which closely tracks the increase in nuclear charge, Z (black line). The $Z_{\text {eff }}$ felt by the outermost valence electrons (blue squares) not only is significantly smaller than Z, it does not evolve linearly with increasing atomic number. It is also possible to estimate $Z_{\text {eff }}$ using certain rules. The values shown as green triangles were obtained by assuming the core electrons are completely effective at screening and the valence electrons do not screen the nuclear charge at all. The values shown as gray diamonds were estimated using Slater's rules.

The History of the Periodic Table Section \#10

- Johann Dobereiner (1780 - 1849)
- Triads
$\square \mathrm{Cl}, \mathrm{Br}$, and I
- Average $1^{\text {st }}$ and last to find properties of middle

Very limited

- John Newlands
- Octaves

Certain properties occur at intervals of 8
\square Similar to musical scale

- Dmitri Mendeleev (1834-1907) \& Julius Lothar Meyer (1830-1895)
- Arranged based on chemical properties of known elements
- Mendeleev given most of the credit
\square Used atomic masses
\square Due to predictive power of table
- Predicted scandium, gallium, and germanium (ekasilicon)
- Corrected atomic mass for indium

$$
\begin{aligned}
& \circ \text { From } 76(\mathrm{InO}) \text { to } 113 \\
& \left(\mathrm{In}_{2} \mathrm{O}_{3}\right)
\end{aligned}
$$

Property	Mendeleev's Predictions for Eka- Silicon (made in 1871)	Observed Properties of Germanium (discovered in 1886)
Atomic weight	72	72.59
Density ($\mathrm{g} / \mathrm{cm}^{3}$)	5.5	5.35
Specific heat (J/g-K)	0.305	0.309
Melting point (${ }^{\circ} \mathrm{C}$)	High	947
Color	Dark gray	Grayish white
Formula of oxide	XO_{2}	GeO_{2}
Density of oxide ($\mathrm{g} / \mathrm{cm}^{3}$)	4.7	4.70
Formula of chloride	XCl_{4}	GeCl_{4}
Boiling point of chloride (${ }^{\circ} \mathrm{C}$)	A little under 100	84

Copyright © 2009 Pearson Prentice Hall, Inc.

- Also for beryllium and uranium
- John Mosely
- Worked with Rutherford
- Discovered atomic number

Unique for each element

- Number of protons on nucleus
- Switched atomic number for atomic masses
- Corrected the arrangement of several elements
$\square \mathrm{Te}$ and I

TABLE 7.3 - Characteristic Properties of Metals and Nonmetals	
Metals	Nonmetals
Have a shiny luster; various colors, although most are silvery	Do not have a luster; various colors Solids are malleable and ductile
Solids are usually brittle; some are hard, some are soft Good conductors of heat and electricity	Poor conductors of heat and electricity Most nonmetal oxides are molecular substances that form acidic solutions
Tend to form cations in aqueous solution	Tend to form anions or oxyanions in aqueous solution

Copyright © 2009 Pearson Prentice Hall, Inc.

The Aufbau Principle and the Periodic Table Section \#11

- German for "building up"
- As protons are added to the nucleus to build up the elements, electrons are added to the hydrogen like orbitals
- Use Z to represent atomic number

Below are the orbital diagrams and electron configurations for the first 8 elements.
H:
He :
Li:
Be:
B:

1 s	2 s
\uparrow	
$\uparrow \downarrow$	
$\uparrow \downarrow$	\uparrow
$\uparrow \downarrow$	$\uparrow \downarrow$
$\uparrow \downarrow$	$\uparrow \downarrow$

$$
\begin{aligned}
& 1 s^{1} \\
& 1 s^{2} \\
& 1 s^{2} 2 s^{1} \\
& 1 s^{2} 2 s^{2} \\
& 1 s^{2} 2 s^{2} 2 p^{1}
\end{aligned}
$$

- Hund's Rule
- Lowest E for an atom is one having the maximum number of unpaired electrons allowed by the Pauli exclusion principal
\square By convention the unpaired electrons are represented as having parallel spins
C:
N :
O:

$\uparrow \downarrow$
$\uparrow \downarrow$
$\uparrow \downarrow$

$\uparrow \downarrow$
$\uparrow \downarrow$
$\uparrow \downarrow$

\uparrow	\uparrow	
\uparrow	\uparrow	\uparrow
$\uparrow \downarrow$	\uparrow	\uparrow

$$
\begin{aligned}
& 1 s^{2} 2 s^{2} 2 p^{2} \\
& 1 s^{2} 2 s^{2} 2 p^{3} \\
& 1 s^{2} 2 s^{2} 2 p^{4}
\end{aligned}
$$

F:	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	$1 s^{2} 2 s^{2} 2 p^{5}$
Ne:	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	$1 s^{2} 2 s^{2} 2 p^{6}$

- Valence electrons
- Outer s and p electronsFor group I metals
1 valence electrons $n \mathrm{~s}^{1}$
For group II metals
2 valence electrons
$n \mathrm{~s}^{2}$
For transition metals
2 valence electrons
$n \mathrm{~s}^{2}(n-1) d^{1-10}$For first p metals
3 valence electrons
$n s^{2}(n-1)^{10} n p^{1}$For last p elements
8 valence electrons
$n s^{2}(n-1)^{10} n p^{6}$
- Magic number for stability in an atom/ion is 8 valence electrons $\left(n s^{2} n p^{6-}\right)$ called octet rule
- Electron configurations
- Use the above rules for writing (Hund's, Pauli, and Aufbau)
- Sequence goes as follows from lowest E level to highest E level

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{6} 7 s^{2} 5 f^{14} 6 d^{10}
$$

Determine Z - atomic number of the element

- This is the number of e^{-}needed to place in configurationUse powers above to find where your Z number falls
- Example: $\mathrm{Fe} Z=26$ so you last e^{-}is in $3 \mathrm{~d}^{10}$.

So the electron configuration for Fe is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$

- Add up the powers to get Z

$$
\text { - } 2+2+6+2+6+2+6=26
$$

Exceptions to Aufbau principle

- These are elements that "borrow" from one subshell to fill or half-fill another half shell
- Cr, Mo, and W borrow from their s to half fill their d
- Cu, Ag, and Au borrow from their s to fill their d
- Half filled or filled subshells give the atom/ion more stability

Abbreviated electron configuration (Noble gas configuration)

- Use the symbol of a Noble gas to represent a string of filled orbitals
[Ne] represents $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$
[Ar] represents $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
$[\mathrm{Kr}] \quad$ represents $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$
And so on
- Add the subshells with correct number of electrons in the row the element is in until the element is reached
- Abbreviated configuration for $\mathrm{Fe}: \quad[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$

- Sample Exercise \#7 - Electron Configurations

Write the electron configuration, orbital diagram, abbreviated configuration, valence electrons, and electron dot diagrams for the following.
(a) sulfur
(b) cadmium
(c) hafnium
(d) radium

Home

Periodic Trends in Atomic Properties Section \#12

- Ionization energy
- E needed to remove an electron from a gaseous atom or ion

Each electron removed increases the I_{E}.

$$
\begin{array}{ll}
\mathrm{Al}(g) \rightarrow \mathrm{Al}^{+}+e^{-} & I_{1}=580 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Al}(g) \rightarrow \mathrm{Al}^{2+}+e^{-} & I_{2}=1815 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Al}(g) \rightarrow \mathrm{Al}^{3+}+e^{-} & I_{3}=2740 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Al}(g) \rightarrow \mathrm{Al}^{4+}+e^{-} & I_{4}=11,600 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

First ionization energy $\left(I_{l}\right)$ is the E needed to remove the highest E electron of an atom

- Why does it take more E to remove subsequent electrons? \qquad
- Trend:
\square across a period from left to right the I_{E} increases
down a group I_{E} decreases
- Sample Exercise \#8 - Trends in Ionization Energies

The first ionization E for phosphorus is $1060 \mathrm{~kJ} / \mathrm{mol}$, and that for sulfur is $1005 \mathrm{~kJ} / \mathrm{mol}$. Why?

- Sample Exercise \#9 - Ionization Energies

Consider atoms with the following electron configurations:
(a) $1 s^{2} 2 s^{2} 2 p^{6}$
(b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
(c) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$

What atom has the largest I_{1}, and which one has the smallest I_{2} ? Explain your choices.

The red dots mark the beginning of a period (alkali metals), the blue dots mark the end of a period (noble gases), and the black dots indicate other representative elements. Green dots are used for the transition metals.

Element	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}
Na	495	4562		(inner-shell electrons)			
Mg	738	1451	7733	11,577			
Al	578	1817	2745				
Si	786	1577	3232	4356	16,091	21,267	
P	1012	1907	2914	4964	6274		27,107
S	1000	2252	3357	4556	7004	8496	
Cl	1251	2298	3822	5159	6542	9362	11,018
Ar	1521	2666	3931	5771	7238	8781	11,995

Copyright © 2009 Pearson Prentice Hall, Inc.

- Electron affinity
- The E change associated with the addition of an e^{-}to a gaseous atom (making it an anion).
- Associated with the production of a negative ion
- The more apt an atom is towards forming a negative ion the more E is released during the formation of the negative ion

$$
\mathrm{X}(g)+e^{-} \rightarrow \mathrm{X}^{-}(g)
$$

Positive sign on E means endothermic
Negative sign on E means exothermic

- Measuring change in E

Trend

- Electron affinities become more negative left to right across a period
- Exceptions: N^{-}is not stable, while C^{-}and O^{-}are stable

Why?

- Let's look at the electron configuration
$\mathrm{N}^{-}(g) \quad 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$ (unstable)
- Extra e^{-}has to occupy an orbital with an e^{-}already in it leading to repulsion
$\mathrm{C}^{-}(g) \quad 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$ (stable)
- Extra e^{-}in unoccupied orbital
$\mathrm{O}^{-}(g) \quad 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$ (stable)
- Extra e^{-}in an orbital with an electron, but has a greater nuclear charge pulling on e^{-}enough to overcome the repulsion between the $e^{-c} \mathrm{~s}$
- Note: O^{2-} is not stable as a (g) too much repulsion among e^{-} 's
- Stable in ionic compounds because of large attractions involved between positive ions and oxide ions
- Down a group electron affinity becomes more positive
- due to electrons being added at increasing distances from the nucleus
- changes going down a group are relatively small
- Take the halogens for example:
A_{e} for halogens

F	$-327.8 \mathrm{~kJ} / \mathrm{mol}$
Cl	$-348.7 \mathrm{~kJ} / \mathrm{mol}$
Br	$-324.5 \mathrm{~kJ} / \mathrm{mol}$
I	$-295.2 \mathrm{~kJ} / \mathrm{mol}$

Cl thru I show the trend, but F to Cl does not

- Difference is due to F small $2 p$ orbitals
- $e^{-\epsilon} \mathrm{s}$ are very close, large $e^{-}-e^{-}$repulsions
- other halogens have larger p orbitals mitigating the repulsion effect

> Electron affinities in for the s - and p block elements in the first five rows of the periodic table. The more negative the electron affinity, the greater the attraction of the atom for an electron. An electron affinity >0 indicates that the negative ion is higher in energy than the separated atom and electron.

Cu -119	Zn >0
Ag -126	Cd >0
Au -223	Hg >0

The following table gives the electron affinities, in $\mathrm{kJ} / \mathrm{mol}$, for the group 1B and group 2B metals: (a) Why are the electron affinities of the group 2B elements greater than zero? (b) Why do the electron affinities of the group 1B elements become more negative as we move down the group? [Hint: Examine the trends in the electron affinity of other groups as we proceed down the periodic table.]

- Atomic radius
- Half the distance between the nuclei in a molecule consisting of identical atoms
- Sometimes called covalent atomic radius

For nonmetallic atoms that do not form diatomic molecules the radius is estimated from their various covalent compounds.For metals the radii is determined to be half way in between two atoms in a metallic crystal
\square Trends

- Increases down a group
- Outer e^{-}are "shielded" from the pull of the protons in the nucleus by the inner e^{-}
- Also, each new period has a corresponding increase in orbital sizes for each new principal quantum number
- Decrease going from left to right across a period
- Explained by increasing effective nuclear charge ($Z_{e f f}$)

Valence e^{-}are drawn closer to the nucleus, decreasing the size of the atom

- $e^{-c} s$ are in same E level across a period and the number of protons in nucleus is increasing so pull on e^{-}greater.

Home

Note from the table that the increase in atomic radius in moving from Zr to Hf is smaller than in moving from Y to La. Suggest an explanation for this effect.

- Sample Exercise \#10 - Trends in Ionic Radius Predict the trend in radius for the following ions: $\mathrm{Be}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$, and Sr^{2+}.

Metallic ions (cations) are smaller than their respective atoms (more protons than electrons), and nonmetallic ions (anions) are larger than their respective atoms (more electrons than protons).

Copyright © 2009 Pearson Prentice Hall, Inc.

Consider a reaction represented by the spheres in the figure. Which sphere represents a metal and which a nonmetal? Explain.

Consider the spheres in the figure. Which one represents Ca , which Ca^{2+}, and which Mg^{2+} ?

An element X reacts with $\mathrm{F}_{2}(g)$ to form the molecular product shown below. (a) Write a balanced equation for this reaction (do not worry about the phases for X and the product). (b) Do you think that X is a metal or nonmetal? Explain.

The Properties of a Group: The Alkali Metals Section \#13

- It is the number and type of valence electrons that primarily determine an atom's chemistry
- Use electron configuration
- Memorize exceptions: Cu and Cr
- Some groups have special names

Group 1	Alkali metals
Group 2	Alkaline earth metals
Group $3-12$	Transition metals
Group 17	Halogens
Group 18	Noble gases
Row $4 f$	Lanthanides
Row $5 f$	Actinides (all are radioactive)
Metals	left of Zhentil line
Metalloids	on the line (except Po and As)
Nonmetals	right of line

- Basic breakup is into metals and nonmetals
- Most important chemical property to consider is metals (low ionization E) form cations and nonmetals (large ionization E) form anions
- Most active metals: lower left of periodic table
- Where ionization E are the lowest
- Most active nonmetals: upper right of periodic table
- High electron affinities
- Highest ionization E
- We will use the Alkali metals group to illustrate
- Lithium, sodium, potassium, rubidium, cesium, and francium
- Fr only occurs very minimally in nature, so it is not considered

	Properties of Five Alkali Metals						
	Val elect	Density @	$\mathbf{m p}$	$\mathbf{b p}$	$\boldsymbol{I}_{\mathbf{1}}$	Atomic Radius	Ionic $\left(\mathbf{M}^{+}\right)$Radius
Element	$\mathbf{c o n f i g}$	$\mathbf{2 5}^{\circ} \mathbf{C}\left(\mathbf{g} / \mathbf{c m}^{\mathbf{3}}\right)$	$\left({ }^{\circ} \mathbf{C}\right)$	$\left({ }^{\circ} \mathbf{C}\right)$	$(\mathbf{k J} / \mathbf{m o l})$	$(\mathbf{p m})$	152
$\mathbf{L i}$	$2 s^{1}$	0.53	180	1330	520	60	
$\mathbf{N a}$	$3 s^{1}$	0.97	98	892	495	186	95
\mathbf{K}	$4 s^{1}$	0.86	64	760	419	227	133
$\mathbf{R b}$	$5 s^{1}$	1.53	39	668	409	247	148
$\mathbf{C s}$	$6 s^{1}$	1.87	29	690	382	265	169

Element	Electron Configuration	Melting Point (${ }^{\circ} \mathrm{C}$)	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Atomic Radius (\AA)	$\begin{aligned} & I_{1} \\ & (\mathrm{~kJ} / \mathrm{mol}) \end{aligned}$
Lithium	[He]2s ${ }^{1}$	181	0.53	1.34	520
Sodium	[Ne] $3 s^{1}$	98	0.97	1.54	496
Potassium	[Ar$] 4 \mathrm{~s}^{1}$	63	0.86	1.96	419
Rubidium	$[\mathrm{Kr}] 5{ }^{1}$	39	1.53	2.11	403
Cesium	[Xe]6s ${ }^{1}$	28	1.88	2.25	376
Copyright © 2009 Pearson Prentice Hall, Inc.					
TABLE 7.6 - Some Properties of the Group 6A Elements					
Element	Electron Configuration	Melting Point (${ }^{\circ} \mathrm{C}$)	Density	Atomic Radius (\AA)	$\begin{aligned} & I_{1} \\ & (\mathrm{~kJ} / \mathrm{mol}) \end{aligned}$
Oxygen	$[\mathrm{He}] 2 s^{2} 2 p^{4}$	-218	$1.43 \mathrm{~g} / \mathrm{L}$	0.73	1314
Sulfur	[Ne$] 3 s^{2} 3 p^{4}$	115	$1.96 \mathrm{~g} / \mathrm{cm}^{3}$	1.02	1000
Selenium	$[\mathrm{Ar}] 3 d^{10} 4 s^{2} 4 p^{4}$	221	$4.82 \mathrm{~g} / \mathrm{cm}^{3}$	1.16	941
Tellurium	$[\mathrm{Kr}] 4 d^{10} 5 s^{2} 5 p^{4}$	450	$6.24 \mathrm{~g} / \mathrm{cm}^{3}$	1.35	869
Polonium	$[\mathrm{Xe}] 4 f^{44} 5 d^{10} 6 s^{2} 6 p^{4}$	254	$9.20 \mathrm{~g} / \mathrm{cm}^{3}$	-	812

Element	Electron Configuration	Melting Point (${ }^{\circ} \mathrm{C}$)	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Atomic Radius (\AA)	$\begin{aligned} & I_{1} \\ & (\mathrm{~kJ} / \mathrm{mol}) \end{aligned}$
Beryllium	[He$] 2 s^{2}$	1287	1.85	0.90	899
Magnesium	[Ne] $3 \mathrm{~s}^{2}$	650	1.74	1.30	738
Calcium	[Ar]4s ${ }^{2}$	842	1.55	1.74	590
Strontium	[Kr]5s ${ }^{2}$	777	2.63	1.92	549
Barium	[Xe] $6 s^{2}$	727	3.51	1.98	503

Element	Electron Configuration	Melting Point (${ }^{\circ} \mathrm{C}$)	Density	Atomic Radius (£)	$\begin{aligned} & I_{1} \\ & (\mathrm{~kJ} / \mathrm{mol}) \end{aligned}$
Fluorine	[He$] 2 s^{2} 2 p^{5}$	-220	$1.69 \mathrm{~g} / \mathrm{L}$	0.71	1681
Chlorine	[Ne$] 3 s^{2} 3 p^{5}$	-102	$3.12 \mathrm{~g} / \mathrm{L}$	0.99	1251
Bromine	[Ar] $3 d^{10} 4 \mathrm{~s}^{2} 4 p^{5}$	-7.3	$3.12 \mathrm{~g} / \mathrm{cm}^{3}$	1.14	1140
Iodine	$[\mathrm{Kr}] 4 d^{10} 5 s^{2} 5 p^{5}$	114	$4.94 \mathrm{~g} / \mathrm{cm}^{3}$	1.33	1008

Element	Electron Configuration	Boiling Point (K)	$\begin{aligned} & \text { Density } \\ & (\mathrm{g} / \mathrm{L}) \end{aligned}$	Atomic Radius* (\AA)	$\begin{aligned} & I_{1} \\ & (\mathrm{~kJ} / \mathrm{mol}) \end{aligned}$
Helium	$1 s^{2}$	4.2	0.18	0.32	2372
Neon	[$\mathrm{He} \mathrm{e} 2 \mathrm{~s}^{2} 2 p^{6}$	27.1	0.90	0.69	2081
Argon	[Ne$] 3 s^{2} 3 p^{6}$	87.3	1.78	0.97	1521
Krypton	$[\operatorname{Ar}] 3 d^{10} 4 s^{2} 4 p^{6}$	120	3.75	1.10	1351
Xenon	$[\mathrm{Kr}] 4 d^{10} 5 s^{2} 5 p^{6}$	165	5.90	1.30	1170
Radon	[Xe] $4 f^{44} 5 d^{10} 6 s^{2} 6 p^{6}$	211	9.73	1.45	1037

- Notes

- Ionization E and atomic radius trends are in agreement
- Overall increase in density is typical of all groups
- Smooth decrease in $m p$ and $b p$ is not typical, in other groups more complicated behaviors exist
- The low mp of Cs is very unusual others include Hg, Ga
- Na and K react with water more vigorously than Li because the heat released melts Na and K (but not Li) allowing for a larger area to contact the water.
!!Notes Are Finished!!!

Some Interesting Items:

Illustration of the flow of CO_{2} from tissues into blood vessels and eventually into the lungs. About 20% of the CO_{2} binds to hemoglobin and is released in the lungs. About 70\% is converted by carbonic anhydrase into $\mathrm{HCO}_{3}{ }^{-}$ion, which remains in the blood plasma until the reverse reaction releases CO_{2} into the lungs. Small amounts of CO_{2} simply dissolve in the blood plasma and are released in the lungs.

The enzyme called carbonic anhydrase (left) catalyzes the reaction between CO_{2} and water to form $\mathrm{HCO}_{3}{ }^{-}$. The ribbon represents the folding of the protein chain. The "active site" of the enzyme (represented by the ball-and-stick model) is where the reaction occurs. (H atoms have been excluded from this model for clarity.) The red sphere represents the oxygen of a water molecule that is bound to the zinc ion (gold sphere) at the center of the active site. The water molecule is replaced by CO_{2} in the reaction. The bonds coming off the five-member rings attach the active site to the protein.

(a) Nickel oxide (NiO), nitric acid $\left(\mathrm{HNO}_{3}\right)$, and water. (b) NiO is insoluble in water, but reacts with HNO_{3} to give a green solution of the salt $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$.
(a) The water has been made slightly basic and contains a few drops of bromthymol blue, an acid-base indicator that is blue in basic solution. (b) Upon the addition of a piece of solid carbon dioxide, $\mathrm{CO}_{2}(s)$, the color changes to yellow, indicating an acidic solution. The mist is due to water droplets condensed from the air by the cold CO_{2} gas.

(a)

Copyright © 2009 Pearson Prentice Hall. Inc.

(b)

Copyright © 2009 Pearson Prentice Hall, Inc.

(c)

Copyright © 2009 Pearson Prentice Hall, Inc.

Copyright © 2009 Pearson Prentice Hall, Inc
a) lithium
b) sodium
c) potassium
d) calcium

Home

At room temperature, the most common allotropic form of sulfur is an eight-member ring, S_{8}.

Copyright © 2009 Pearson Prentice Hall, Inc.

All three of these-from left to right, iodine $\left(\mathrm{I}_{2}\right)$, bromine $\left(\mathrm{Br}_{2}\right)$, and chlorine $\left(\mathrm{Cl}_{2}\right)$-exist as diatomic molecules.

Home

