AP Chem Topic#9 Acid/Bases General

Formula Page

$$\underset{\text{weak acid}}{\text{HA}} \underset{\text{hydrogen ion}}{\longleftrightarrow} \overset{\text{}}{\text{H}}^{+} \overset{\text{}}{\text{+}} \overset{\text{}}{\text{A}^{-}}$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

Percent Ionization =
$$\frac{[H^+]}{HA_{initial}} \times 100\%$$

Acids/Bases
Tonic#9

Acid-Base General Properties

Acid - Latin (acidus) for "sour."

Alkali - Arabic for ashes (ashes dissolved in wate produce a solution that feels slippery and taste bitter.

Acids

- \bullet pH < 7
- $\bullet [H^+] > 1.0 \times 10^{-7} M$
- \bullet [H⁺] > [OH⁻]
- blue litmus paper red
- taste sour
- corrosive
- react with bases to produce water and a salt
- phenolphthalein is **clear** in acidic solutions (pH < 7)
- react with active metals (Zn, Fe, alkali, alkaline earth, etc.) to produce hydrogen gas and a soluble ionic compound.
- hydronium ion is present in great quantities (one can use either [H⁺] or [H₃O⁺] to represent the concentration of hydrogen ion in solution
- Strong acids are strong electrolytes
- Weak acids are weak elecrolytes
- React with carbonates to produce CO₂(g)
- React with sulfides to produce H₂S(g)

Bases

- \bullet pH > 7
- [H+] < 1.0 x $10^{-7}M$
- $\bullet [OH^{-}] > [H^{+}]$
- red litmus paper blue
- tast bitter
- feels slippery
- react with bases to produce water and a salt
- phenolphthalein is **pink** in basic solutions (pH > 7
- Strong bases are strong electrolytes
- Weak bases are weak electrolytes

	Acids/Bases	
Acid-Base Theories	Topic#9	

Acid - Latin (acidus) for "sour."

Alkali - Arabic for ashes (ashes dissolved in wate produce a solution that feels slippery and taste bitte

Arrhenius Acids/Bases:

- Acids produce hydrogen ions in aqueous solutions, while bases produce hydroxide ions.
- Only applies to aqueous solutions and allows for only one kind of base the hydroxide ion.
 - Strong acids:
 - Binary: hydrochloric acid, HCl(aq), hydrobromic acid, HBr(aq), and hydroiodic acid, HI(aq)
 - Oxyacids: nitric acid, HNO₃(aq), sulfuric acid, H₂SO₄(aq), chloric acid, HClO₃(aq), and perchloric acid, HClO₄(aq)
 - Strong bases:
 - Group I hydroxides: LiOH(aq), NaOH(aq), KOH(aq), RbOH(aq), CsOH(aq)
 - Middle 3 Group II hydroxides: $Ca(OH)_2(aq)$, $Sr(OH)_2(aq)$, and $Ba(OH)_2(aq)$

MEMORIZE THE STRONG ACIDS AND BASES!!!!

Acids/Bases
Tonic#9

Bronsted-Lowry Acids/Bases (BL)

- Acid donates a proton (proton donor)
- Base accepts a proton (proton acceptor)
 - After an acid donates a proton, it becomes a conjugate base as a product in an acid-base reaction.
 - After a base accepts a proton, it becomes a conjugate acid as a product in an acid-base reaction.
 - General BL acid-base equation: A + B ⇔ CB + CA
 - Conjugate acid-base pair: H₂O and OH-, H₃O+ and H₂O, HNO₂ and NO₂-

Lewis Acids/Bases

- Acid is an electron pair acceptor.
 - All transition metal ions are Lewis acids.
- Base is an electron pair donor.

Acids/Bases Topic#9

$$Cu^{2+}(aq) + 4NH_3(aq) = \begin{bmatrix} NH_3 \\ H_3N-Cu-NH_3 \\ NH_3 \end{bmatrix}^{2+} (aq)$$

Acids/Bases
Topic#9

Acid dissociation constant, K_a , is a measure of the strength of an acid.

- The strength of an acid depends on how readily it can donate a hydrogen, H, to another species.
 - A $K_a > 1$ indicates a strong acid (SA)
 - SA include HI(aq), HBr(aq), HCl(aq), HNO₃(aq), HClO₄(aq), HClO₃(aq) and H₂SO₄(aq).
 - SA ionize 100% into H⁺ (H₃O⁺, hydronium) and the acid anion (A⁻)
 - Written as a complete reaction: $HCl(aq) \rightarrow H^+(aq) + Cl^-(aq)$ with $K_a >> 1$
 - In binary acids (an acid with just two elements, one being H) (H-X), the strength of the acid depends on the strength of the bond between the H and the second element. To determine relative strength, use the size of the atom attached to H. The larger the atom attached to H, the weaker the bond between the H and other atom. Weaker bonds makes it easier for water to remove the hydrogen.
 - Please order from weakest to strongest: HI(aq), HCl(aq), and HBr(aq)
 - In oxyacids (H-O-X), the strength of the acid depends on the number of oxygens attached to the X element. As the number of oxygens increases, the O-H bond becomes weaker and more polarized, so the H is more easily removed by water.
 - Please order from weakest to strongest: $HClO_3(aq)$, $HClO_2(aq)$, HClO(aq) and $HClO_4(aq)$.
 - What if the X is the only difference between the acids (HOCl vs HOBr)?
 - Then the strength of the acid depends on the EN values of the X. The greater the EN value, the greater the attraction of electrons. This weakens the O-H bond resulting in a higher acid strength.
 - Please order from weakest to strongest: HOCl(aq), HOI(aq), and HOBr(aq).

Acid Strength Due to Structure

Table 14.7 | Bond Strengths and Acid Strengths for Hydrogen Halides

H—X Bond	Bond Strength (kJ/mol)	Acid Strength in Water
H—F	565	Weak
H—Cl	427	Strong
H—Br	363	Strong
H—I	295	Strong

strength dependent on the electronegativity of central atom

Acid Strength Due to Structure

Acids/Bases Topic#9

Perchloric

Strong acid

Electron density

Acid Strength Due to Structure

Factors Affecting Acid Strength

In oxyacids, in which an -OH is bonded to another atom, Y, the more electronegative Y is, the more acidic the acid.

TABLE	16.6	• 1	Electronegativity
Values	(EN)	of	Y and
Acid-D)issoc	iati	ion Constants

Acid	EN of Y	\mathbf{K}_{a}
HClO	3.0	3.0×10^{-8}
HBrO	2.8	2.5×10^{-9}
HIO	2.5	2.3×10^{-11}

H-O-I H-O-Br H-O-Cl
2.5 2.8 3.0

Electronegativity of 'Y'

Acids/Bases
Topic#9

Weak Acids

• A $K_a < 1$ indicates a weak acid (WA)

■ WA include HCN(aq), $HNO_2(aq)$, HF(aq), $H_3PO_4(aq)$, $HSO_4^-(aq)$, HOCl(aq), $HClO_2(aq)$, $CH_3COOH(aq)$ ($HC_2H_3O_2(aq)$), and $NH_4^+(aq)$.

• These are the most common WA used on the test.

■ WA only partially ionize (usually under 10%), so WA are in a state of equilibrium.

• Written as an equilibrium: $HCN(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + CN^-(aq)$ with a $K_a = 6.2 \times 10^{-10}$

• General equation for a weak acid:

H₂O(*l*)
$$\Leftrightarrow$$
 H₃O'(*aq*) + CN(*aq*) + CN

• Equilibrium expression for a weak acid:

$$K_a = \frac{[H^*][A^*]}{[HA]}$$

No.	Acid	K _a	pK_a
1	Hydroiodic acid (HI)	3.16x10 ⁹	-9.5
2	Hydrobromic acid (HBr)	1.0x10 ⁹	-9
3	Hydrochloric acid (HCl)	1.0x10 ⁶	-6
4	Sulfuric acid (H ₂ SO ₄)	1.0x10 ³	-3
5	Hydronium ion (H ₃ O ⁺)	55	-1.74
6	Nitric acid (HNO ₃)	28.2	-1.45
7	Trifluoroacetic acid (CF3COOH)	5.62x10 ⁻¹	0.25
8	Oxalic acid (HOOC-COOH)	5.37x10 ⁻²	1.27
9	Acetic acid (CH3COOH)	1.75x10 ⁻⁵	4.76

Weak Acids

Acids/Bases Topic#9

Quatities of HA, H⁺, and A⁻ @ equilibrium: SA vs. WS

	Acids/Bases		
Formula Page	Topic#9		
$\frac{\textbf{Property}}{K_a}$	Various Ways to Describe Acid Strength Strong Acid (SA) large	Weak Acid (WA) small	HA hydr
Position of the ionization equilibrium	far to the right	far to the left	$K_a =$
Equilibrium concentration [H ⁺] compared to [HA] _o	of $[H^+] \cong [HA]_0$	$[\mathrm{H^+}] << [\mathrm{HA}]_\mathrm{o}$	
Strength of conjugate base compared to water	A ⁻ much weaker base than water*	A much stronger ba than water**	ase
*Does not react with water **Does react with water	$A^- + H_2O \rightarrow NR$	$A^- + H_2O \Leftrightarrow HA +$	OH-

Note: When an ion is a stronger base or acid than water, hydrolysis of water by the ion occurs. This is a Bronsted-Lowry acid base reaction

- an anion reacts with H₂O to form OH ions or a cation reacts with H₂O to form H₊ ions
- the acid/base strength of an ion depends on its parent acid or base. The stronger the parent acid/base the weaker the conjugate base/acid. Ex. F⁻ comes from HF which is a weak acid so F⁻ is a stronger conjugate base than Cl- which comes from the parent acid, HCl.

Formula Page

As the strength of the acid, increases the strength of the conjugate base decreases. In other words, the *ability* of the conjugate base to react with water decreases as the strength of its acid increases.

- Cl- is a very weak base (does not react with water.
- F⁻ is a strong enough base to react with water to create HF molecules and OH⁻ ions.

Acids/Bases Topic#9 Acid Strength Conjugate Base Strength

Acids	s/Bases
Top	oic#9

Acids-Bases Sample WS#1 - Introduction to Acid-Bases

- 1. Write the simple dissociation (ionization) reaction with water for each of the following acids and label the acid (A), base (B), conjugate base (CB), and conjugate acid (CA):
 - a. hydrochoric acid (HCl) HCl(-2) + H50(1) -> H30+(-6) + (1-(-6))
 - b. acetic acid (ethanoic acid) (HC₂H₃O₂ and CH₃COOH)

c. the ammonium ion (NH₄⁺)

d. the anilinium ion $(C_6H_5NH_3^+)$

e. methyl amine (CH₃NH₂)

$$CH_3 NH_2 (aq) + H_2O (e) \Rightarrow CH_3 NH_3^+ (q) + OH^- (aq)$$

$$CA \qquad CB$$

Acids/Bases
Topic#9

Bronsted-Lowry Acid-Base Reactions Practice Problems

- 2. Identify the acid (A), base (B), conjugate base (CB), and conjugate acid (CA) in each of the following reactions.
 - a. $NH_3(aq) + HNO_2(aq) \Leftrightarrow NO_2^-(aq) + NH_4^+(aq)$ **A C B C A**
 - b. $H_2PO_4^-(aq) + HCl(aq) \rightarrow H_3PO_4(aq) + Cl^-(aq)$ B

 A

 CA

 C6
 - c. $CH_3NH_3^+(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + CH_3NH_2(aq)$ A

 CA

 CB
 - d. H_2PO_4 - $(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + HPO_4^2$ -(aq)

Amphoteric Species

- A species that can act as a BL acid or base
- Has the ability to donate a proton, H+, (acid) or accept a proton (base).
- Examples include H₂PO₄¹⁻, HPO₄²⁻, H₂O, HS¹⁻, HSO₄¹⁻,

Acid-Base Reaction Product Prediction Practice Problems

3. Predict the products of the following acid-base reactions and identify the acid (A), base (B), conjugate base (CB), and conjugate acid (CA).

a.
$$PO_4^{3-}(aq) + H_2O(l) \Rightarrow HPO_4^{2-}(a_2) + OH_4^{-}(a_2)$$

b. $HS^{-}(aq) + NH_3(aq) \Rightarrow S^{2-}(a_2) + NH_4^{-}(a_2)$
A B CB CA
c. $NH_4^{+}(aq) + S^{2-}(aq) \Rightarrow NH_3^{-}(a_2) + HS^{-}(a_2)$
A B CB CA

Acids/Bases
Topic#9

Relative Base Strength Practice Problems

- 4. Arrange the following species according to their strengths as bases: H₂O, F-, Cl-, NO₂-, and CN-. K_a (HF) = 7.2x10⁻⁴, K_a (HCl) >> 1, K_a (HNO₂) = 4.0x10⁻⁴, and K_a (HCN) = 6.2x10⁻¹⁰
 - (1) Order according to acid strength. HCI > HF > HNO2 > HCN
 - (2) Write the A- of the acid (The (onjugate base) and reverse the symbol.

(1' < F' < NO2' < CN'
H20

Blace H20 between the (B it will react with and the first CB it does not react with.

 $CI^- < H_2O < F^- < NO_2^- < CN^-$

Calculating pH/pOH/[H₃O⁺]/[OH⁻]

Acids/Bases Topic#9

Acids-Bases Sample WS#2 - pH/pOH/[H₃O[±]]/[OH⁻]

Self Ionization of Water @ 25° C

 $K_{\rm w} = [{\rm H^+}] \times [{\rm OH^-}] = 1.0 \times 10^{-14}$ Neutral solution: $[{\rm H^+}] = [{\rm OH^-}]$ Acidic solution: $[{\rm H^+}] > [{\rm OH^-}]$ Basic solution: $[{\rm H^+}] < [{\rm OH^-}]$

[H⁺] and [OH⁻] Practice Problems

1. Calculate [H⁺] or [OH⁻] as required for each of the following solutions at 25°C, and state whether the solution is neutral, acidic, or basic.

a.
$$1.0 \times 10^{-5} M \text{ OH}^{-}$$

b. $1.0 \times 10^{-7} M \text{ OH}^{-}$

c. $10.0 M \text{ H}^{+}$

$$\begin{bmatrix} H_{3}0^{+} \end{bmatrix} = \frac{K_{\omega}}{[0H^{-}]} \\
= \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-5}} \\
= 1.0 \times 10^{-7} M$$

$$\begin{bmatrix} H_{3}0^{+} \end{bmatrix} = \frac{10.0 M}{[0H^{-}]} \\
= \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-7}} \\
= 1.0 \times 10^{-7} M H_{3}0^{+}$$

$$\begin{bmatrix} H_{3}0^{+} \end{bmatrix} = \frac{1 \times 10^{-14}}{10} \\
= 1 \times 10^{-15} M H_{3}0^{+}$$

Reutral

Acidic

Acid-Base Theories

Acids-Bases Sample WS#2 - pH/pOH/[H₃O[±]]/[OH⁼]

Self Ionization of Water @ 25°C

 $K_{\rm w} = [{\rm H^+}] \times [{\rm OH^-}] = 1.0 \times 10^{-14}$ Neutral solution: $[{\rm H^+}] = [{\rm OH^-}]$ Acidic solution: $[{\rm H^+}] > [{\rm OH^-}]$ Basic solution: $[{\rm H^+}] < [{\rm OH^-}]$

- 2. At 60°C, the value of K_w is 1.0x10⁻¹³.
 - a. Using Le Chatelier's principle, predict whether the reaction $2H_2O(l) \Leftrightarrow H_3O^+(aq) + OH^-(aq)$ is exothermic or endothermic.
 - b. Calculate [H⁺] and [OH⁻] in a neutral solution at 60°C.
 - (a.) Since the Kw increased from 1.0x10-19 to 1.0x10-13 with an increase of temperature from 25°C to 60°C, the ionization of water is endothermic.

(b.)
$$[H^{+}][OH^{-}] = 1.0 \times 10^{-13}$$

$$\chi^{2} = 1.0 \times 10^{-13}$$

$$\chi = \sqrt{1.0 \times 10^{-13}}$$

$$\chi = 3.2 \times 10^{-7}$$

$$3.2 \times 10^{-7} M = [H^{+}] = [OH^{-}]$$

The pH Scale

- 0-14
- pH is the measure of the hydrogen content of a solution.
- Best method of measuring pH is by using a pH meter.
- pH < 7; acidic solution
- pH> 7; basic solution
- $\bullet pH = -log[H^+]$
- $pOH = -log[OH^-]$
- $\bullet pH + pOH = 14$
- $\bullet [H^+] = 10^{-pH}$
- $[OH^{-}] = 10^{-pOH}$

Acids/Bases Topic#9

	Acids/Bases	
Acid-Base Theories	Topic#9	

Calculations involving pH/pOH Practice Problems 3. Calculate pH and pOH: a. 1.0x10⁻³M OH⁻ c. 3.0x

c. 3.0x10⁻⁴M H⁺

b. 1.0*M* OH⁻

d. 5.5x10⁻⁴M OH⁻

4. The pH of a sample of human blood was measured to be 7.41 at 25°C. Calculate pOH, [H⁺], and [OH⁻] for the sample.

<u>C</u>

Acid-Base Theories

Calculating the pH of Strong Acids/Bases Practice Problems

- 5. a. Calculate the pH and pOH of $0.10M\,\mathrm{HNO_3}$
 - b. Calculate the pH and pOH of 1.0x10⁻¹⁰M HCl
 - c. Calculate the pH and pOH of 0.130 HI
 - d. Calculate the pH and pOH of 0.10M NaOH
 - e. Calculate the pH and pOH of 0.00450M KOH
 - f. Calculate the pH and pOH of 0.030M Ca(OH)₂

Acid-Base Theories

tera Buse Incomes

Percent IonizationAmount of acid/base that has ionized

• SA/SB ionize 100%

• WA/WB ionize under 10%, with most under 5%

• % ionized = $[H^+]$ x 100% or $[OH^-]$ x 100% $[B]_0$

 Rule: under 5% ionization you can get rid of the +x when solving for an equilibrium concentration of H⁺ or other species.

• Use K_a to solve for [H⁺] or K_b to solve for [OH-].

 $HA \rightleftharpoons H^+ + A^ B+H_2O +BH^++OH$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{[H^{+}]^{2}}{[HA]} \quad K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]} = \frac{[OH^{-}]^{2}}{[B]_{o}}$$

$$[H^{+}] = \sqrt{K_{a}[HA]} \qquad [OH^{-}] = \sqrt{K_{b}[B]}$$

Percent Ionization (Dissociation) Practice Problem

6. Calculate the percent dissociation of acetic acid ($K_a = 1.8 \times 10^{-5}$) in each of the following solutions.

a.
$$1.00M \, \text{HC}_2\text{H}_3\text{O}_2$$
 (Ans: 0.42%)

$$\text{(H+)} = \sqrt{(K_a)[\text{HA}]_0} = \sqrt{(J.8 \times 10^5)(I)} = 0.0042$$

$$\text{(Ans: } 0.42\%$$
)

$$\text{(Ans: } 0.42\%$$
)

$$\text{(Ans: } 1.3\%$$
)

$$\text{(Ans: } 1.3\%$$
)

$$\text{(H+)} = \sqrt{(J.8 \times 10^{-5})(0.100)} = 0.00134$$

$$\text{(O.00134} \times 1007_0 = 0.00134$$

$$\text{(O.00134} \times 1007_0 = 0.00134$$

$$\text{(O.00134} \times 1007_0 = 0.00134$$

Acid-Base Theories

Calculating the pH of a Weak Acid

• set up as an equilibrium

•
$$[H^+] = (K_a \times [HA]_o)^{1/2}$$

$$[H^+] = \sqrt{K_a[HA]}$$

• Check for % ionization

• If less than 5% you are OK, if not set up equilibrium expression and use quadratic equation.

• % ionization =
$$[H^+]$$
 x 100%

Calculating Percent Ionization

• Percent ionization = $\frac{[H_3O^+]_{eq}}{[HA]_{initial}} \times 100$

· In this example,

$$[H_3O^+]_{eq} = 4.2 \times 10^{-3} M$$

 $[HCOOH]_{initial} = 0.10 M$

Percent ionization =
$$\frac{4.2 \times 10^{-3}}{0.10} \times 100$$

= 4.2%

Acids/Bases
Topic#9

pH of a Weak Acid Practice Problems

7. Calculate the pH of a 0.100M aqueous solution of HOCl (hypochlorous acid) ($K_a = 3.5 \times 10^{-8}$). (Ans: 4.23) Major species: $HOCl (H_2O)$ Species producing H⁺: $HOCl (M_2) \Rightarrow H^+ + OCl (M_2)$

Write Equil Exp for dominant rxn: Ka= [H"][0(1-)

Set up RICE table:

Use
$$[H^*] = \sqrt{K_a[HA]} = \sum_{i=1}^{n} \frac{1}{(3.5 \times 10^{-3})(0.1)} = 59 \times 10^{-5} \text{ M}$$

Check 5% rule: $\frac{5.9 \times 10^{-5}}{0.1} \times (00\% - 0.059\%)$ Solve for pH: $PH = -\log(5.9 \times 10^{-5}) = 4.229$

Topic#9 **Acid-Base Theories** pH of a Weak Acid Mixture Practice Problems 8. Calculate the pH that contains 1.00*M* HCN ($K = 6.22 \times 10^{-10}$) and 5.00*M* HNO₂ ($K_a = 4.0 \times 10^{-4}$). Also calculate the concentrations of cyanide ion (CN⁻) In this solution at equilibrium. (Ans: 1.35 and 1.4x10⁻⁸M) HCN/H20/HNOZ Major species: Species producing H⁺: HNO₂ Write Equil Exp for dominant rxn: $k_a = [H^*][N^{1}_2]$

Acids/Bases

Set up RICE table: Use $[H^+] = (K_a \times [HA]_o)^{1/2}$: $(H^-) = \sqrt{41.0004 (5)} = 44.4750^{-2} M$ Check 5% rule:

PH = - log (4.47 ×102) = [1.35] Solve for pH:

Acids/Bases
Topic#9

Calculating K_a from Percent Dissociation Practice Problems

9. Lactic acid (HC₃H₅O₃) is a waste product that accumulates in muscle tissue during exercise, leading to pain and a feeling of fatigue. In a 0.100M aqueous solution, lactic acid is 3.7% dissociated. Calculate the value of K_a for this acid. (Ans: 1.4×10^{-4})

0.100 HA
$$V_{q} = \frac{NTR}{[H^{2}][A^{2}]}$$

$$V_{q} = \frac{NTR}{[HA]}$$

$$V$$

Acids/Bases
Topic#9

Bases

- Strong Bases (SB) completely dissociate
 - All are ionic compounds (LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH)₂, Sr(OH)₂, and Ba(OH)₂)

 $[OH^-] = \sqrt{K_h[B]}$

- NaOH(s) \rightarrow Na⁺(aq) + OH⁻(aq)
- $\blacksquare [B]_o = [OH-]_E$
- Weak Bases (WB) partially dissociate (ionic compound: $Mg(OH)_2(s) \Leftrightarrow Mg^{2+}(aq) + 2OH(aq)$) or ionize (molecular compound, $CH_3NH_2(aq) + H_2O(l) \Leftrightarrow CH_3NH_3^+(aq) + OH^-(aq)$) (methyl amine)
- WB need to be set up in a RICE table
- The [OH-] can be calculated by using the K_b (measure of the base strength). $K_w = K_a \times K_b = 1.0 \times 10^{-14}$

$$\bullet K_{\rm w} = K_{\rm a} \times K_{\rm b} = 1.0 \times 10^{-14}$$

$$B_{(aq)} + H_2O_{(aq)} \rightleftharpoons BH_{(aq)}^+ + OH_{(aq)}^-$$

$$K_b = \frac{[BH^+][OH^-]}{[B]}$$

Acids/Bases
Tonic#9

Topic#9 Sample WS#3 - pH of Bases Practice Problems

1. Calculate the pH of a 5.0x10⁻²M NaOH solution. (Ans: 12.70)

2. Calculate the pH, pOH, and percent ionization of a 15.0M solution of NH₃ ($K_b = 1.8 \text{x} 10^{-5}$).

$$|S.M| = [NH_3]_0 \qquad NH_3 + H_2O \ge NH_4^+ + OH^- \qquad (Ans: 12.20, 1.80, and 0.11\%))$$

$$|Solve: [OH] = \sqrt{Kb[B]_0} \qquad PH = \frac{12.21}{1.79} \qquad 3. (OH) = \sqrt{(1.8 \times 10^{-5})(15)} = \frac{1.64 \times 10^{-2} M}{15} OH^- \qquad POH = \frac{0.112}{15}$$

$$POH = -lg(1.64 \times 10^{-2}) = 1.79 \qquad \%im = \frac{1.64 \times 10^{-2}}{15} \times 100 = 0.1196$$

Acids/Bases Topic#9

3. (OYO) Calculate the pH, pOH, and percent ionization of a 1.0M solution of methylamine ($K_b = 4.38 \times 10^{-4}$).

$$20im = \frac{6.0209}{1} \times 100\%$$

$$= 0.0209 \times 100\%$$

$$= 0.0207 \text{ MOH}^{-1}$$

$$= 2.170 \text{ poh} = -109(0.0209) - 1.68$$

$$QH = 14 - 1.68 = 12.32$$

Acid-Base Theories

Polyprotic Acids

• acids with more than one acidic hydrogen

 $H_3PO_{4(aq)} + H_2O_{(1)} \rightleftharpoons H_3O^+_{(aq)} + H_2PO_4^-_{(aq)} \quad K_{a1} = 7.5 \times 10^{-1}$

$$H_2PO_4(aq) + H_2O_{(1)} \rightleftharpoons H_3O_{(aq)}^+ + HPO_4^{2-}(aq) K_{a2} = 6.2 \times 10^{-3}$$

Consider the dissociation of phosphoric acid.

 \bullet most common: H_3PO_4 , H_2SO_4 , H_2SO_3 , H_2CO_3 , and $H_2C_2O_4$. • Acids with more than one ionizable hydrogens, will ionize in steps.

 $HPO_4^{2-}(aq) + H_2O_{(l)} \rightleftharpoons H_3O^{+}(aq) + PO_4^{3-}(aq)$ $K_a = 2.2 \times 10^{-22}$

■ Two acidic hydrogens, two equations with water

■ Three acidic hydrogens, three equations with water

• For each equation, a K_a value exists. $K_a = K_{a1} \times K_{a2} \times \text{etc.}$

H+ HSO4 - HS - LICO3-1

 $K_{a3} = 4.8 \times 1$

• Generally, $K_{a1} > K_{a2} > \text{etc.}$

• Can calculate pH, [H⁺], from first reaction for high concentrations of the acid.

Na USO4

• For low concentrations, check for 5% rule after first solution for [H⁺].

Name	Formula	K_{a_1}	K_{a_2}	K_{a_3}
Phosphoric acid	H ₃ PO ₄	7.5×10^{-3}	6.2×10^{-8}	4.8×10^{-13}
Arsenic acid	H ₃ AsO ₄	5×10^{-3}	8×10^{-8}	6×10^{-10}
Carbonic acid	H ₂ CO	4.3×10^{-7}	8.6 × 18 ⁻¹¹	
Sulfuric acid	H ₂ SO ₄	Large	1.2×10^{-2}	
Sulfurous acid	H ₂ SO ₃	1.5×10^{-2}	1.0×10^{-7}	
Hydrosulfuric acid*	H ₂ S	1.0×10^{-7}	~10-19	
Oxalic acid	H ₂ C ₂ O ₄	6.5×10^{-2}	6.1×10^{-5}	
Ascorbic acid (vitamin C)	$H_2C_6H_6O_6$	7.9×10^{-5}	1.6×10^{-12}	

	Acids/Bases	
Acid-Base Theories	Topic#9	

Calculating pH of Polyprotic Acids Practice Problems

4. Calculate the pH of a 5.0M H₃PO₄ solution and the equilibrium concentrations of the species H₃PO₄, H₂PO₄ HPO₄²⁻, and PO₄³⁻. ($K_{a1} = 7.5 \times 10^{-3}$, $K_{a2} = 6.2 \times 10^{-8}$, and $K_{a3} = 4.8 \times 10^{-13}$)

(Ans: pH = 0.72, [H⁺] = [H₂PO₄¹⁻]=0.19M, [H₃PO₄] = 4.8M, [HPO₄²⁻] = 6.2×10⁻⁸, and [PO₄³⁻] = 1.6×10⁻¹⁹)

(work on next page)

Acid-Base Theories

Salt Hydrolysis

• A salt is created from an acid-base reaction (neutralization)

• Occurs when a salt dissolved in water changes the pH of water

• One of the ions from the salt reacts with water to form H⁺ or OH⁻ ions.

• Cations from SB DO NOT react with water. a. Na⁺, K⁺, Ca²⁺, Sr²⁺, etc.

• Anions from SA DO NOT react with water. a. Cl⁻, Br⁻, NO₃⁻, SO₄²-, etc.

NaOH & Leasic

 $WA + WB \longrightarrow salt$ and water salt affect on pH is determined by the K_a and K_b

SA + SB --> neutral salt and water

SA + WB --> <u>acidic salt</u> and water salt will lower the pH of the solution

HCI + NHYNO3 -> HNO3 + NHYCI

NATOH

NHY++H20 = NH3+ 1+0+

SB + WA ---> basic salt and water salt will raise the pH of the solution

NOH + H(2 1/3 05 → HOT + Ma(5 1/3 05

(2H302+H20 = HGH302+ OH-

Acid-Base Theories

How to do a "quick" determination of whether a salt will produce an acidic or basic solution.

- 1. Determine parent acid by adding an "H" to the anion. Ex. NaF, HF is a WA.
- 2. Determine parent base by adding "OH" to the cation. Ex. NaF, NaOH is a SB.
- 3. The "strong" part determines the nature of the solution.

Ex. Since NaOH is a SB, the NaF solution is basic (pH>7).

Why? Na⁺ DOES not react with water while F⁻ does react with water:

$$F^{-}(aq) + H_2O(l) \rightarrow HF(aq) + OH^{-}(aq)$$

- 4. If both parent acid/base are from weak acids/bases then you have to look at the K_a and K_b values of the parent acid or base.
 - a. If the $K_a > K_b$ then the solution is acidic.
 - b. If the $K_b > K_a$ then the solution is basic.

Table 14.5 Qualitative Prediction of pH for Solutions of Salts for Which Both Cation and Anion Have Acidic or Basic Properties

 $K_a > K_b$ pH < 7 (acidic) $K_b > K_a$ pH > 7 (basic) $K_a = K_b$ pH = 7 (neutral)

Neutral Salts - a salt created from a SA and SB. $NaNO_3 \colon HNO_3 + NaOH$

Basic Salts - a salt created from a WA and a SB.

 $KC_2H_3O_2$: $HC_2H_3O_2 + KOH$

Acidic Salts - a salt created form a SA and a WB. NH₄Cl: HCl + NH₄OH

Example: What is the qualitative pH of Fe(NO₃)₃?

Acids/Bases
Topic#9

Determination of a Salt as Acidic, Basic, or Neutral Practice Problems.

- 5. Predict whether an aqueous solution of each of the following salts will be acidic, basic, or neutral. Prove with appropriate equations.
 - a. NaC₂H₃O₂
 - b. NH₄NO₃
 - c. NH₄CN (K_a (HCN) = 6.2×10^{-10} and the K_b (NH₃) = 1.8×10^{-5})
 - Na C2H3O2 Parent Acid is HC2H3O2 (WA) (a) Parent Base is NaOH (SB)

Since the parent base is strong and parentacid is weak, the sult will produce a basic solution.

(P) NH4NO3 Parent acid: HNO3 (SA)

Since the parentacid is strong and the parent base is weak, the salt will produce an acidic solution. Parent base: NHyOH(WB)

(c) NH4 CN Parent acid: HCN(WA) Parent base: NHgOH(WB) (NH3 + 400)

Ka (H(N) < Kb (NH3) the solution will be basic. This means (N'is a more effect base than NHyt is an effect acid.

Acids/Bases
Topic#9

6. What is the relative pH of a solution created by adding the salt, NH₄F, is added to water? (K_a (HF) = 7.2×10^{-4} and K_b (NH₃) = 1.8×10^{-5})

Parent acid:
$$HF(WA)$$
 $K_{a}(HF) > K_{b}(NH_{3})$

Parent base: $NH_{y}OH(WB)$ The solution will be acidic, ($NH_{3} + H_{2}O$) be cause NH_{y}^{+} is a more effective acid than F is a base

 $F'(ag) + H_{2}O(e) \ge HF(ag) + OH'(ag)$ $K_{b}(F) = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-4}} = \frac{1.4 \times 10^{-11}}{7.2 \times 10^{-4}}$
 $NH_{y}^{+}(ag) + H_{2}O(e) \ge NH_{3}(ag) + H_{3}O^{+}(ag) + K_{a}(NH_{y}^{+}) = \frac{1.0 \times 10^{-19}}{1.9 \times 10^{-5}} = 5.6 \times 10^{-10}$
 $K_{a}(NH_{y}^{+}) > K_{b}(F)$
 $K_{a}(NH_{y}^{+}) > K_{b}(F)$
 $K_{a}(NH_{y}^{+}) > K_{b}(F)$

	Acids/Bases
Acid-Base Theories	Topic#9

Hydrolysis Reactions (Anion/Cation Reaction with Water)

Write the hydrolysis reaction for the salt NaCN.

Parent acid:

Parent base:

Which is weak:

Use the anion of a weak acid or the cation of a weak base to write an equation based on its reaction with water. Cation (conjugate acid) reacts be donating an H^+ TO water creating hydronium (H_3O^+).

$$B^+ + H_2O \rightarrow BH + H_3O^+$$

Anion (conjugate base) reacts by accepting an H⁺ FROM water creating hydroxide (OH⁻).

$$A^- + H_2O \rightarrow HA + OH^-$$

Determining pH of a Solution Involving Cation/Anion Hydrolysis

- Write out the hydrolysis equation and equilibrium expression, K_a (cation) or K_b (anion)
- Determine the K_a (cation reaction) or K_b (anion reaction) by using the equation $K_w = K_a \times K_b$
- Solve for $[H^+]$ or $[OH^-]$ using K_a/K_b
- Remember to use $(x10^{-4})$ rule for elimination of the \pm -x
- Use this equation for solving for $[H^+]$: $[H^+] = \sqrt{K_a[HA]}$
- Use this equation for solving for [OH-]: $[OH-] = \sqrt{K_b[B]}$

Acids/Bases
Topic#9

Salt Hydrolysis Practice Problem

7. Write the hydrolysis reactions for the following salts:

Acid-Base Theories

Salts as Weak Bases Practice Problems

(Ans: 8.31)

Salts as Weak Bases Practice Problems

8. Calculate the pH of a 0.30M NaF solution. The
$$K_a$$
 for HF is 7.2×10^{-4} .

(Ans: 8

$$F + H_2 0 = HF + 0H$$

$$F + H_2 = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-2}} = 1.4 \times 10^{-11}$$

$$F = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-2}} = 1.4 \times 10^{-11}$$

$$F = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-2}} = 1.4 \times 10^{-11}$$

$$F = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-2}} = 1.4 \times 10^{-11}$$

$$F = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-2}} = 1.4 \times 10^{-11}$$

$$F = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-2}} = 1.4 \times 10^{-11}$$

$$F = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-2}} = 1.4 \times 10^{-11}$$

$$F = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-2}} = 1.4 \times 10^{-11}$$

$$F = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-2}} = 1.4 \times 10^{-11}$$

$$F = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-2}} = 1.4 \times 10^{-11}$$

$$F = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-2}} = 1.4 \times 10^{-11}$$

$$F = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-2}} = 1.4 \times 10^{-11}$$

Salts as Weak Acids Practice Problems

(Ans: 5.13)

Acid-Base Theories

11. Determine whether each of the following is a Lewis acid or base, draw structures as proof.

(a) PH₃

(b) BCl₃

(c) H₂S

(d) SF_4

HGH₃0₂ / 6.430 10 1.0 F NH₃ / NH₄

LB LA LB

12. For each reaction, identify the Lewis acid and base:

(a) $Ni^{2+}(aq) + 6NH_3(aq) \rightarrow Ni(NH_3)_4^{2+}$

(b) $H^+(aq) + H_2O \leftrightarrow H_3O^+(aq)$

- LB

PH3 5+3(1) = 8 wd -6 2 vole