\qquad

8 - General Equilibrium/Solubility Equilibrium

WS\#1: Introduction to EqUiLIbrium

1. For the following three reactions,
a. Write the K_{eq} expression in terms of concentration, K_{c}.
b. Given the equilibrium concentrations, state whether each equilibrium is product-favored, reactantfavored, or fairly even ([products] \approx [reactants]).
c. Calculate the value of K_{c}.
i. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \leftrightarrow 2 \mathrm{NH}_{3}(g)$

At equilibrium: $\left[\mathrm{N}_{2}\right]=1.50 \mathrm{M}$ $\left[\mathrm{H}_{2}\right]=2.00 \mathrm{M}$ $\left[\mathrm{NH}_{3}\right]=0.01 \mathrm{M}$
ii. $\mathrm{HF}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{1-}(\mathrm{aq})$
At equilibrium: $[\mathrm{HF}]=0.55 \mathrm{M}$ $\left[\mathrm{H}^{+}\right]=0.001 \mathrm{M}$ $\left[\mathrm{F}^{1-}\right]=0.001 \mathrm{M}$

iii. $\mathrm{Fe}^{3+}(a q)+\mathrm{SCN}^{1-}(a q) \leftrightarrow \mathrm{FeSCN}^{2+}(a q)$

At equilibrium:	$\left[\mathrm{Fe}^{3+}\right]=0.55 M$
$\left[\mathrm{SCN}^{1-}\right]=0.001 M$	
$\left[\mathrm{FeSCN}^{2+}\right]=$	
$0.001 M$	

Summarize:

Fill in the blanks with product-favored, reactant-favored, and approximately equal.

$\boldsymbol{K}_{\mathbf{c}}$	State of Equilibrium
$K_{\mathrm{c}} \gg 1$	
$K_{\mathrm{c}} \ll 1$	
$K_{\mathrm{c}} \approx 1$	

2. Knowing that pure water has a density of $1 \mathrm{~g} / 1 \mathrm{~mL}$ calculate the mass of 1.00 Liter of water.
a. Calculate the number of moles in 1.00 L of $\mathrm{H}_{2} \mathrm{O}$.
b. What is the concentration (M) of water in water?
c. At this temperature, can you get more moles of water into this Liter of water?
The $\left[\mathrm{H}_{2} \mathrm{O}\right]$ \qquad (is / is not) constant.

Important Note:

Since the concentrations of solids and liquids are constant, they are incorporated into the equilibrium constant, $K_{\text {eq }}$.
That means, just leave them out of the K_{c} or K_{p} expression.
Only include (g) and (aq)!
3. Write equilibrium expressions for each of the following reactions:
a. $\mathrm{CaCO}_{3}(s) \leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
b. $\mathrm{Ni}(s)+4 \mathrm{CO}(g) \leftrightarrow \mathrm{Ni}(\mathrm{CO})_{4}(g)$
c. $5 \mathrm{CO}(g)+\mathrm{I}_{2} \mathrm{O}_{5}(s) \leftrightarrow \mathrm{I}_{2}(g)+5 \mathrm{CO}_{2}(g)$
d. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(a q) \leftrightarrow \mathrm{CaCO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(g)$
e. $\mathrm{AgCl}(s) \leftrightarrow \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{1-}(a q)$
4. Write the equilibrium expression in terms of partial pressures (K_{p}) for each of the following reactions.

Rate the reactions in order of their increasing tendency to proceed toward completion:
a. $4 \mathrm{NH}_{3}(g)+3 \mathrm{O}_{2}(g) \leftrightarrow 2 \mathrm{~N}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

$$
K_{\mathrm{p}}=1 \times 10^{228} \mathrm{~atm}
$$

b. $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \leftrightarrow 2 \mathrm{NO}(g)$ $K_{\mathrm{p}}=5 \times 10^{-31}$
c. $2 \mathrm{HF}(g) \leftrightarrow \mathrm{H}_{2}(g)+\mathrm{F}_{2}(g)$ $K_{\mathrm{p}}=1 \times 10^{-13}$
d. $2 \mathrm{NOCl}(g) \leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \quad K_{\mathrm{p}}=4.7 \times 10^{-4} \mathrm{~atm}$

A Question That You Should Be Able To Answer:
Why don't the K_{p} 's in (b) and (c) have units?

7. a. Write the K_{c} expression for

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \leftrightarrow 2 \mathrm{SO}_{3}(g)
$$

Calculate the value of K_{c} :

At equilibrium:	$\left[\mathrm{SO}_{2}\right]=1.50 \mathrm{M}$
	$\left[\mathrm{O}_{2}\right]=1.25 \mathrm{M}$
	$\left[\mathrm{SO}_{3}\right]=3.50 \mathrm{M}$

b. If we reverse the equation, it is:

$$
2 \mathrm{SO}_{3}(g) \leftrightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)
$$

Write the K_{c} expression for this equation and calculate the new value of K_{c} :
How does the expression and the value of K_{c} in 7(b) compare with those in 7(a)?
c. If we now multiply all of the coefficients by $1 / 2$: $\mathrm{SO}_{3}(\mathrm{~g}) \leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
Write the K_{c} expression for this equation and calculate the new value of K_{c} :
How do they compare with 7(b)?
d. What would happen to the K_{c} expression and its value if we doubled the coefficients?

Summarize:

Equation	$\boldsymbol{K}_{\mathbf{c}}$ expression \& Value
doubled	
reversed	
halved	

8. Consider an equilibrium that occurs in two steps:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~S}(a q) \leftrightarrow \mathrm{H}^{+}(a q)+\mathrm{HS}^{1^{-}-}(a q) \\
& \underline{\mathrm{HS}^{-1}(a q)} \leftrightarrow \mathrm{H}^{+}(a q)+\mathrm{S}^{-2}(a q)
\end{aligned}
$$

a. Write the overall reaction.
b. How do the K_{c} 's for the two steps ($K_{\mathrm{c} 1} \& K_{\mathrm{c} 2}$) relate to the K_{c} of the overall reaction (K_{c})?

WS\#2: EQUILIBRIUM ($K_{\text {EQ }}$) Expression

1. Write the expressions for the equilibrium constant K_{c} for the following reactions:
a. $4 \mathrm{NH}_{3}(g)+7 \mathrm{O}_{2}(g) \leftrightarrow 4 \mathrm{NO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)$
b. $\quad 3 \mathrm{O}_{2}(g) \leftrightarrow 2 \mathrm{O}_{3}(g)$
2. Write the equilibrium constant expressions for the following reactions. How are they related to one another?
a. $\quad 2 \mathrm{~N}_{2} \mathrm{O}(g)+3 \mathrm{O}_{2}(g) \leftrightarrow 4 \mathrm{NO}_{2}(g)$
b. $\quad \mathrm{N}_{2} \mathrm{O}(g)+3 / 2 \mathrm{O}_{2}(g) \leftrightarrow 2 \mathrm{NO}_{2}(g)$
c. $4 \mathrm{NO}_{2}(g) \leftrightarrow 2 \mathrm{~N}_{2} \mathrm{O}(g)+3 \mathrm{O}_{2}(g)$
3. Put the following K values in order of increasing product-favored ability.
a. $K=4 \times 10^{-5}$
b. $K=2 \times 10^{-9}$
c. $K=7 \times 10^{-5}$
d. $\quad K=3 \times 10^{-3}$
4. Which of the following equations does $K_{\mathrm{c}}=K_{\mathrm{p}}$?
a. $\quad \mathrm{PCl}_{5}(g) \leftrightarrow \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$
b. $2 \mathrm{NOCl}(g) \leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g)$
d. $\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO} \leftrightarrow \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)$
e. $\quad 2 \mathrm{NO}(g) \leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(g)$
c. $\mathrm{CaCO}_{3}(s) \leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{3}(g)$
5. If the mechanism of a chemical equilibrium consists of two reversible elementary steps, each with its own equilibrium constant $K_{\mathrm{c} 1}$ and $K_{\mathrm{c} 2}$, what expression relates the equilibrium constant K_{c} for the overall equilibrium to the two constants $K_{\mathrm{c} 1}$ and $K_{\mathrm{c} 2}$?
6. Given the following equations:

$\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \leftrightarrow \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)$	$K_{\mathrm{c}}=4.8$
$\mathrm{FeO}(s)+\mathrm{CO}(g) \leftrightarrow \mathrm{Fe}(s)+\mathrm{CO}_{2}(g)$	$K_{\mathrm{c}}=0.48$

Calculate the K_{c} value for: $\mathrm{Fe}(s)+\mathrm{H}_{2} \mathrm{O}(g) \leftrightarrow \mathrm{FeO}(s)+\mathrm{H}_{2}(g) \quad K_{\mathrm{c}}=$?
(Ans: 9.984)
7. Consider the equilibrium: $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \leftrightarrow 2 \mathrm{SO}_{3}(g) \quad K_{\mathrm{c}}=4.36$

Calculate the value of " Q " for a situation in which $\left[\mathrm{SO}_{2}\right]=2.00 M,\left[\mathrm{O}_{2}\right]=1.50 M$, and $\left[\mathrm{SO}_{3}\right]=1.25 M$.
Does this mixture shift toward the reactants or products to reach equilibrium?
8. When converting K_{c} to K_{p} use the equation $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$. Where $R=0.082 \overline{1, T}$ is in Kelvin, and Δn is the difference in moles of gas between products and reactants $\left(\Delta n=n_{\text {products }}-n_{\text {reactants }}\right)$. Write the K_{p} expression for the reaction in question (7) and calculate its value at $0^{\circ} \mathrm{C}$.
(Ans: 0.195)
9. The equation $2 \mathrm{NH}_{3}(g) \leftrightarrow \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$ has a value of $K_{\mathrm{c}}=2.7 \times 10^{-4}$. At STP, what is the value of K_{p} ? (Ans: 0.136)
10. For the equation, $\mathrm{NH}_{4} \mathrm{I}(s) \leftrightarrow \mathrm{NH}_{3}(g)+\mathrm{HI}(g)$, the total pressure is 4.2 atm at equilibrium. What is K_{p} ? (Ans: 4.41)

WS\#3: RICE TAbLES

1. Consider the equilibrium: $2 \mathrm{~N}_{2} \mathrm{O}(g)+\mathrm{O}_{2}(g) \leftrightarrow 4 \mathrm{NO}(g)$. 3.00 moles of $\mathrm{NO}(g)$ are introduced into a 1.00-Liter evacuated flask. When the system comes to equilibrium, 1.00 mole of $\mathrm{N}_{2} \mathrm{O}(g)$ has formed. Determine the equilibrium concentrations of each substance. Calculate the K_{c} for the reaction based on these data.

	$2 \mathrm{~N}_{2} \mathrm{O}$		O_{2}
initial change equilibrium			4 NO

Remember: The "ice" box may be used with moles, molarity, or Liters (for gaseous equilibria)... never grams.
2. For the equation, $\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) K_{\mathrm{c}}=0.235$. If 2.00 moles of each $\mathrm{H}_{2} \mathrm{O}$ and CO are put into a 10.0 L container, what is the concentration of all species at equilibrium? $\left(\right.$ Ans: $\left.\left[\mathrm{CO}_{2}\right]=\left[\mathrm{H}_{2}\right]=0.065 ;\left[\mathrm{H}_{2} \mathrm{O}\right]=[\mathrm{CO}]=0.135\right)$
3. For the equation, $\mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \leftrightarrow \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g) K_{\mathrm{p}}=4.8$. If enough $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is put into a container so its pressure is

4. For the reaction: $\mathrm{PCl}_{5}(g) \leftrightarrow \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$, if the initial pressure of PCl_{5} is 2.00 atm and at equilibrium it is 15% dissociated, what is K_{p} ? (Ans: 0.0529)
5. Chlorine molecules will dissociate at high temperatures into chlorine atoms. At $3000^{\circ} \mathrm{C}$, for example, K_{c} for the equilibrium shown is 0.55 . If the partial pressure of chlorine molecules is 1.5 atm , calculate the partial pressure of the chlorine atoms: $\mathrm{Cl}_{2}(g) \leftrightarrow 2 \mathrm{Cl}(g)$. (Ans: 15atm)
6. Suppose that 0.50 moles of hydrogen gas, 0.50 moles of iodine gas, and 0.75 moles of hydrogen iodide gas are introduced into a 2.0 Liter vessel and the system is allowed to reach equilibrium. $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \leftrightarrow 2 \mathrm{HI}(g)$. Calculate the concentrations of all three substances at equilibrium. At the temperature of the experiment, K_{c} equals 2.0×10^{-2}. (Ans: $\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=0.41 \mathrm{M}$ and $\left.[\mathrm{HI}]=0.06 \mathrm{M}\right)$
7. When 2.0 mol of carbon disulfide and 4.0 mol of chlorine are placed in a 1.0 Liter flask, the following equilibrium system results. At equilibrium, the flask is found to contain 0.30 mol of carbon tetrachloride. What quantities of the other components are present in this equilibrium mixture? $\mathrm{CS}_{2}(g)+3 \mathrm{Cl}_{2}(g) \leftrightarrow \mathrm{S}_{2} \mathrm{Cl}_{2}(g)+\mathrm{CCl}_{4}(g)\left(A n s\right.$: $\left[\mathrm{CS}_{2}\right]=$ $1.7 \mathrm{M},\left[\mathrm{Cl}_{2}\right]=3.1 \mathrm{M}$, and $\left[\mathrm{S}_{2} \mathrm{Cl}_{2}\right]=0.30 \mathrm{M}$)
8. 3.0 moles each of carbon monoxide, hydrogen, and carbon are placed in a 2.0 Liter vessel and allowed to come to equilibrium according to the equation: $\mathrm{CO}(g)+\mathrm{H}_{2}(g) \leftrightarrow \mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g)$. If the equilibrium constant at the temperature of the experiment is 4.0 , what is the equilibrium concentration of water vapor? (Ans: $\left[\mathrm{H}_{2} \mathrm{O}\right]=1.0 \mathrm{M}$)
9. Nitrosyl chloride NOCl decomposes to nitric oxide and chlorine when heated: $2 \mathrm{NOCl}(\mathrm{g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$. At 600 K , the equilibrium constant K_{p} is 0.060 . In a vessel at 600 K , there is a mixture of all three gases. The partial pressure of NOCl is 675 torr, the partial pressure of NO is 43 torr and the partial pressure of chlorine is 23 torr.
a. What is the value of the reaction quotient? (Ans: 0.093)
b. Is the mixture at equilibrium? (Ans: no)
c. In which direction will the system move to reach equilibrium? (Ans: shift to left, $Q>K$)
d. When the system reaches equilibrium, what will be the partial pressures of the components in the system?
(Ans: $P_{\mathrm{NOCl}}=681$ torr, $P_{\mathrm{NO}}=37$ torr, and $P_{\mathrm{C} 12}=20$.torr)
10. Sulfuryl chloride decomposes at high temperatures to produce sulfur dioxide and chlorine gases:
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \leftrightarrow \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g)$. At $375^{\circ} \mathrm{C}$, the equilibrium constant K_{c} is 0.045 . If there are 2.0 grams of sulfuryl chloride, 0.17 gram of sulfur dioxide, and 0.19 grams of chlorine present in a 1.0 Liter flask,
a. What is the value of the reaction quotient? (Ans: 4.8×10^{-4})
b. Is the system at equilibrium? (Ans: no)
c. In which direction will the system move to reach equilibrium? (Ans: $Q<K$, so it will shift right)
11. Ammonium chloride is placed inside a closed vessel where it comes into equilibrium at $400^{\circ} \mathrm{C}$ according to the equation shown. Only these three substances are present inside the vessel. If K_{p} for the system at $400^{\circ} \mathrm{C}$ is 0.640 , what is the pressure inside the vessel? $\mathrm{NH}_{4} \mathrm{Cl}(s) \leftrightarrow \mathrm{NH}_{3}(g)+\mathrm{HCl}(g)$ (Ans: 1.60atm)
12. Bromine and chlorine react to produce bromine monochloride according to the equation, $\mathrm{Br}_{2}(g)+\mathrm{Cl}_{2}(g) \leftrightarrow$ $2 \mathrm{BrCl}(g)$ and $K_{\mathrm{c}}=36.0$ under the conditions of the experiment. If 0.180 moles of bromine gas and 0.180 moles of chlorine gas are introduced into a 3.0 Liter flask and allowed to come to equilibrium, what is the equilibrium concentration of the bromine monochloride? How much BrCl is produced? (Ans: $[\mathrm{BrCl}]=0.090 \mathrm{M}$ and 0.27 mol)
13. When ammonia is dissolved in water, the following equilibrium is established. If the equilibrium constant is 1.8×10^{-5}, calculate the hydroxide ion concentration in the solution if 0.100 mol of ammonia is dissolved in sufficient water to make 500 mL of solution. $\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrow \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$ (Ans: $0.0019 M$)

WS\#4: Le Chatelier's Principle

1. Consider the equilibrium $\mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \leftrightarrow \mathrm{PCl}_{5}(g)$.

How would the following changes affect the partial pressures of each gas at equilibrium?
($\uparrow=$ increase; $\downarrow=$ decrease; $-=$ unchanged) $\quad \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \leftrightarrow \mathrm{PCl}_{5}(g)$
a. addition of PCl_{3}
b. removal of Cl_{2}
c. removal of PCl_{5}
d. decrease in the volume of the container
e. addition of He without change in volume

2. How will each of the changes in question (3) affect the $K_{\text {eq }}$? $\overline{(\uparrow=}$ increase; $\downarrow=$ decrease; $-=$ unchanged)
a. \qquad
b. \qquad c.
d. \qquad
e. \qquad
3. Indicate how each of the following changes affects the amount of each gas in the system below, for which $\Delta H_{\text {reaction }}$ $=+9.9 \mathrm{kcal}$.
($\uparrow=$ increase; $\downarrow=$ decrease; $-=$ unchanged)
$\mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g) \leftrightarrow \mathrm{H}_{2} \mathrm{O}(g) \quad+\mathrm{CO}(g)$
a. addition of CO_{2}
b. addition of $\mathrm{H}_{2} \mathrm{O}$
c. addition of a catalyst
d. increase in temperature
e. decrease in the volume of the container
4. How will each of the changes in question (13) affect the equilibrium constant? ($\uparrow=$ increase; $\downarrow=$ decrease; $-=$ unchanged).
a. \qquad b. \qquad c.
d. \qquad e. ___
5. Consider the equilibrium:

How will the amount of chemicals at equilibrium be affected by
a. adding $\mathrm{N}_{2} \mathrm{O}$
b. removing O_{2}
c. increasing the volume of the container
d. adding a catalyst
6. For the reaction,

How will the concentration of each chemical be affected by
a. adding O_{2} to the system
b. adding N_{2} to the system
c. removing $\mathrm{H}_{2} \mathrm{O}$ from the system
d. decreasing the volume of the container

$$
2 \mathrm{~N}_{2} \mathrm{O}(g)+\mathrm{O}_{2}(g) \quad \leftrightarrow 4 \mathrm{NO}(g)
$$

7. The following reaction is exothermic: $\mathrm{Ti}(s)+2 \mathrm{Cl}_{2}(g) \leftrightarrow \mathrm{TiCl}_{4}(g)$. List all the ways the yield of the product TiCl_{4} could be increased.

WS\#5: Reading a Solubility Curve

1. Which substance is the most soluble at $0^{\circ} \mathrm{C}$? At $100^{\circ} \mathrm{C}$?
2. How many grams of substance " B " will dissolve in 100 g of water at $60^{\circ} \mathrm{C}$? How about in 400 g of water at the same temperature?
3. Which substance shows the least change in solubility form $0^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}$?
4. As you increase the temperature of the water, what happens to the solubility of "A"?
5. As you increase the temperature of the water, what happens to the solubility of "B"?
6. As you increase the temperature of the water, what happens to the solubility of "C"?
7. Which substance(s) are probably a solid?
8. Which substance(s) are probably a gas?
9. If you put 40 g of " A " into 100 g of water at $50^{\circ} \mathrm{C}$ the solution would be?
10. If you put 40 g of " " " into 100 g of water at $50^{\circ} \mathrm{C}$ the solution would be?
11. If you put 40 g of " A " into 100 g of water at $20^{\circ} \mathrm{C}$ the solution would be?
12. Describe how to make a supersaturated solution of " B " at $50^{\circ} \mathrm{C}$.

WS\#6: Solubility, $\boldsymbol{K}_{\text {Sp }}$, And Common Ion Effect

Write a net ionic equation and the solubility product expression ($K_{\text {sp }}$) for the following precipitation reaction.

1. Solutions of sodium sulfate and calcium bromide are mixed.
2. Solutions of aluminum (III) acetate and lithium hydroxide are mixed.
3. Solutions of iron (III) sulfate and sodium sulfide are mixed.
4. Solutions of aluminum (III) sulfate and calcium hydroxide are mixed.
5. Solutions of potassium chromate and lead (II) acetate are mixed.
6. Solutions of silver (I) nitrate and ammonium sulfide are mixed.
7. Write the dissociation equation, solubility expression ($K_{\text {sp }}$), and appropriate substitution scenario ($\mathrm{x}^{2}, 4 \mathrm{x}^{3}, 27 \mathrm{x}^{4}$, or $108 \mathrm{x}^{5}$) for the following ionic solids ($\mathrm{x}^{2}, 4 \mathrm{x}^{3}, 27 \mathrm{x}^{4}$, or $108 \mathrm{x}^{5}$).
a. CaCO_{3}
b. $\mathrm{Al}(\mathrm{OH})_{3}$
c. $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
d. $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
8. Determine the $K_{\text {sp }}$ of silver (I) bromide, AgBr , given that its molar solubility is 5.71×10^{-7} moles per liter. (Ans: 3.26×10^{-13})
9. Determine the $K_{\text {sp }}$ of zinc (II) bromide (ZnBr_{2}), given that its molar solubility is 2.52×10^{-8} mole per liter.(Ans: $6.40 \times 10^{-0^{23}}$)
10. Silver chloride, AgCl , has a $K_{\mathrm{sp}}=1.77 \times 10^{-10}$. Calculate its solubility in moles per liter. (Ans: $1.33 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$)
11. Aluminum phosphate, AlPO_{4}, has a $K_{\text {sp }}$ of 9.83×10^{-21}. What is its molar solubility in pure water? (Ans: $9.91 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$)
12. A 100.0 mL sample is removed from a sea water solution saturated in MgF_{2} at $18^{\circ} \mathrm{C}$. The water is completely evaporated from the sample and a 7.6 mg deposit of $\mathrm{MgF}_{2}(s)$ is obtained. What is the K_{sp} for MgF_{2} ? (Ans:)
13. Calculate the molar solubility of silver (I) chromate in water at $25^{\circ} \mathrm{C}$. Find the $K_{\text {sp }}$ for silver (I) chromate in the solubility table. (Ans:)
14. Calculate the solubility of solid $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(K_{\mathrm{sp}}=1.3 \times 10^{-32}\right)$ in a $0.20 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$ solution. (Ans:)
15. The solubility of $\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$ in a $0.20 \mathrm{M} \mathrm{KIO}_{3}$ solution is $4.4 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$. Calculate $K_{\text {sp }}$ for $\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}$. (Ans:)
16. A solution contains $1.0 \times 10^{-5} \mathrm{Man}_{3} \mathrm{PO}_{4}$. What is the minimum concentration of AgNO_{3} that would cause precipitation of solid $\mathrm{Ag}_{3} \mathrm{PO}_{4}\left(K_{\text {sp }}=1.8 \times 10^{-18}\right)$? (Ans:)
17. A solution is $1 \times 10^{-4} M$ in NaF, $\mathrm{Na}_{2} \mathrm{~S}$, and $\mathrm{Na}_{3} \mathrm{PO}_{4}$. What would be the order of precipitation as a source of Pb^{2+} is added gradually to the solution? The relevant $K_{\text {sp }}$ values are $K_{\text {sp }}\left(\mathrm{PbF}_{2}\right)=4 \times 10^{-8}, K_{\text {sp }}(\mathrm{PbS})=7 \times 10^{-29}$, and $K_{\text {sp }}$ $\left(\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right)=1 \times 10^{-54}$. (Ans:)

Answer Key
 WS\#3

1. NA
2. 4.0×10^{-8}
3. 7.26×10^{-9}
4. $6.54 \times 10^{-5} \mathrm{M}$
5. 1.1×10^{-73}
6. $3.3 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$
7. $6.4 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$
8. $2.3 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$
9. 3.5×10^{-10}

WS\#4

1. $Q_{\mathrm{sp}}=5.32 \times 10^{-10}$, yes a ppt will form
2. $\left[\mathrm{Mg}^{2+}\right]=2.1 \times 10^{-6} \mathrm{M},\left[\mathrm{F}^{1}\right]=5.50 \times 10^{-2} \mathrm{M}$
3. $\left[\mathrm{I}^{1-}\right]=2.6 \times 10^{-3} M$ for PbI_{2} and $\left[\mathrm{I}^{1-}\right]=5.3 \times 10^{-8} M$ for CuI ; CuI will ppt first
4. $\left[\mathrm{AgNO}_{3}\right]>5.6 \times 10^{-5} \mathrm{M}$
5. $\mathrm{PbS}(s)$ will ppt first, followed by $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)$ and PbF_{2} will ppt last.
