\qquad Date \qquad 1

3 - Stoichiometry

WS\#1: Compositional Stoichiometry

1. Write the balanced formula equation for the following reactions.
a. europium is reacted with gaseous hydrogen fluoride to produce solid europium (III) fluoride and hydrogen gas.
b. sodium fluorosilicate $\left(\mathrm{Na}_{2} \mathrm{SiF}_{6}(s)\right)$ reacts with solid sodium producing silicon and sodium fluoride.
c. calcium silicate $\left(\mathrm{CaSiO}_{3}(s)\right)$ and hydrogen fluoride gas react to produce calcium fluoride, silicon tetrafluoride, and water.
2. Calculate the percent composition by mass of each element in the following compounds.
a. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
3. The "alum" used in cooking is potassium aluminum sulfate hydrate, $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \bullet x \mathrm{H}_{2} \mathrm{O}$. To find the value of x, you can heat a sample of the compound to drive off all of the water and leave only $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}$. Assume you heat 4.74 g of the hydrated compound and that the sample loses 2.16 g of water. What is the value of x ? (Ans: $x=12$)
4. If "Epsom salt," $\mathrm{MgSO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}$ is heated to $250^{\circ} \mathrm{C}$, all the water of hydration is lost. On heating, a 1.687 g sample of the hydrate, 0.824 g of MgSO_{4} remains. What is the formula of Epsom salt? (Ans: $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$)
5. There are two binary compounds of mercury and oxygen. Heating either of them results in the decomposition of the compound, with oxygen gas escaping into the atmosphere while leaving a residue of pure mercury. Heating 0.6498 g of one of the compounds leaves a residue of 0.6018 g . Heating 0.4172 g of the other compound results in a mass loss of 0.016 g . Determine the empirical formula of each compound. (Ans: HgO and $\mathrm{Hg}_{2} \mathrm{O}$)
6. Adipic acid is an organic compound composed of $49.31 \% \mathrm{C}, 43.79 \% \mathrm{O}$, and the rest hydrogen. If the molar mass of adipic acid is $146.1 \mathrm{~g} / \mathrm{mol}$, what are the empirical and molecular formulas for adipic acid? (Ans: $\mathrm{C}_{3} \mathrm{O}_{2} \mathrm{H}_{5}$ and $\mathrm{C}_{6} \mathrm{O}_{4} \mathrm{H}_{10}$)

WS\#2: Reaction Stoichiometry

7. Cumene is a compound containing only carbon and hydrogen that is used in the production of acetone and phenol in the chemical industry. Combustion of 47.6 mg cumene produces some CO_{2} and 42.8 mg water. The molar mass of cumene is between 115 and $125 \mathrm{~g} / \mathrm{mol}$. Determine the empirical and molecular formulas. (Ans: $\mathrm{C}_{9} \mathrm{H}_{12}$)
8. Lysine is an amino acid which has the following elemental composition: $\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{N}$. In one experiment, 2.175 g of lysine was combusted to produce 3.94 g of CO_{2} and $1.89 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. In a separate experiment, 1.873 g of lysine was burned to produce 0.436 g of NH_{3}. The molar mass of lysine is approximately $150 \mathrm{~g} / \mathrm{mol}$. Determine the empirical and molecular formula of lysine. (Ans: $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}, \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$)
9. Aluminum reacts with chlorine gas to form aluminum chloride via the following unbalanced reaction: __Al + $\ldots \mathrm{Cl}_{2} \rightarrow$ AlCl . How many grams of aluminum chloride could be produced from 34.0 g of aluminum and 39.0 g of chlorine gas? (Ans: $48.9 \mathrm{~g} \mathrm{AlCl}_{3}$)
10. Suppose 316.0 g aluminum sulfide reacts with 493.0 g of water. What mass of the excess reactant remains? The unbalanced equation is: $\quad \mathrm{Al}_{2} \mathrm{~S}_{3}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \mathrm{Al}(\mathrm{OH})_{3}+\ldots \mathrm{H}_{2} \mathrm{~S}$. (Ans: 265.5g$)$
11. For the unbalanced equation shown below, if the reaction of 91.3 grams of $\mathrm{C}_{3} \mathrm{H}_{6}$ produces an 81.3% yield, how many grams of CO_{2} would be produced? _ $\mathrm{C}_{3} \mathrm{H}_{6}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$. (Ans: 232g)
12. What is the percent yield of the following reaction if $\overline{60.0}$ grams of CaCO_{3} is heated to give 15.0 grams of CaO ? $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$. (Ans: 44.6%)

WS\#3: Gases

14. How many grams of sulfur trioxide occupy a container with a volume 5.89L at STP. (Ans: $21.1 \mathrm{~g} \mathrm{SO}_{3}$)
15. Calculate the volume 3.00 moles of a gas will occupy at $24.0^{\circ} \mathrm{C}$ and 762.4 mmHg . (Ans: 72.9 L)
16. What is the molar mass of a gas which has a density of $0.00249 \mathrm{~g} / \mathrm{mL}$ at $20.0^{\circ} \mathrm{C}$ and 744.0 mmHg ? (Ans: $61.2 \mathrm{~g} / \mathrm{mol}$)
17. Air is a mixture of 21% oxygen gas and 79% nitrogen gas (neglect minor components and water vapor). What is the density of air at $30.0^{\circ} \mathrm{C}$ and 1.00 atm ? (Ans: $1.17 \mathrm{~g} / \mathrm{L}$)
18. How much air is needed (in m^{3}, at $25.0^{\circ} \mathrm{C}, 1.00 \mathrm{~atm}$) to completely burn 10.0 moles of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$. Assume that the air is composed of $21.0 \% \mathrm{O}_{2}$. (Ans: $5.82 \mathrm{~m}^{3}$)
19. Ammonium sulfate, an important fertilizer, can be prepared by the reaction of ammonia with sulfuric acid according to the following unbalanced chemical equation: __ $\mathrm{NH}_{3}(g)+\ldots \mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \ldots\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(a q)$. Calculate the volume of NH_{3} in liters needed at $20.0^{\circ} \mathrm{C}$ and 25.0 atm to react with $150.0 \mathrm{~kg} \mathrm{of}_{\mathrm{H}}^{2} \mathrm{SO}_{4}(\mathrm{aq})$. (Ans: 2945L NH 3)
20. If 45.0 L of natural gas, which is essentially methane $\left(\mathrm{CH}_{4}\right)$ undergoes complete combustion at 730 mmHg and $20 .{ }^{\circ} \mathrm{C}$, how many grams of each product are formed? (Ans: 79.2 grams $\mathrm{CO}_{2} ; 64.8 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$)
21. Fritz Haber, a German chemist, discovered a way of to synthesize ammonia gas $\left(\mathrm{NH}_{3}\right)$ by combining hydrogen and nitrogen gases at extremely high temperatures and pressures.
a. Write a balanced equation for this reaction.
b. If 10.0 kg of nitrogen combines with excess hydrogen at $550 .{ }^{\circ} \mathrm{C}$ and $250 . \mathrm{atm}$, what volume of ammonia gas is produced? (Ans: 193L NH3)
22. A 3.25 gram sample of solid calcium carbide $\left(\mathrm{CaC}_{2}\right)$ reacts with water to produce acetylene gas $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ and aqueous calcium hydroxide. If the acetylene was collected over water at $17^{\circ} \mathrm{C}$ and 740.0 mmHg , how many milliliters of acetylene were produced. (Remember to subtract out the pressure of water vapor at $17^{\circ} \mathrm{C}$ from the total pressure (740.0 mmHg). (Ans: $1250 \mathrm{~mL} \mathrm{C}_{2} \mathrm{H}_{2}$)

WS\#4: Solution Stoichiometry

23. Sea water contains roughly 28.0 g of NaCl per liter. What is the molarity of sodium chloride in sea water? (Ans: 0.479 M)
24. What is the molarity of 5.30 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ dissolved in 400.0 mL solution? What is the concentration for each ion in solution? (Ans: $0.125 \mathrm{M} ;\left[\mathrm{Na}^{1+}\right]=0.250 \mathrm{M}$ and $\left[\mathrm{CO}_{3}{ }^{2-}\right]=0.125 \mathrm{M}$)
25. What weight (in grams) of $\mathrm{H}_{2} \mathrm{SO}_{4}$ would be needed to make 750.0 mL of 2.00 M solution? (Ans: 147 g)
26. What volume (in mL) of $18.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is needed to contain $2.45 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$? (Ans: 1.39 mL)
27. Silver chloride is formed by mixing silver nitrate and barium chloride solutions. What volume of 1.50 M barium chloride solution is needed to form 0.525 g of silver chloride? (Ans: $1.22 \mathrm{~mL} \mathrm{BaCl}_{2}$)
28. 25.00 mL of 0.500 M barium chloride solution is mixed with 25.00 mL of 0.500 M silver nitrate solution. What mass of silver chloride will be formed? (Ans: 1.79 g AgCl)

Free Response Question

29. Three volatile compounds X, Y, and Z each contain element Q. The percent by weight of element Q in each compound was determined. Some of the data obtained are given below.

Percent by Weight	Molecular
of Element Q	Weight
64.8%	88.1
73.0%	104.
59.3%	64.0

a. Determine the mass of element Q contained in 1.00 mole of each of the three compounds.
b. Calculate the most probable value of the atomic weight of element Q .
c. Compound Z contains carbon, hydrogen, and element Q . When 1.00 gram of compound Z is oxidized and all of the carbon and hydrogen are converted to oxides, 1.37 grams of CO_{2} and 0.281 gram of water are produced. Determine the most probable molecular formula of compound Z .

