\qquad Date \qquad 1

5 - Thermochemistry/Thermodynamics

WS\#1: WORK/ENERGY/ENTHALPY

1. Which has the greater kinetic energy, an object with a mass of 2.0 kg and a velocity of $1.0 \mathrm{~m} / \mathrm{s}$ or an object with a mass of 1.0 kg and a velocity of $2.0 \mathrm{~m} / \mathrm{s}$? (Ans: $1.0 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}^{2}(\mathrm{~J}) \mathrm{vs} .2 .0 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}^{2}(\mathrm{~J})$
2. 900.J of heat are added to a system and 200. joules of work are done on the system. What is the change in energy of the system? (Ans: +1100 J)
3. Calculate the work for a system that absorbs 260 kJ of heat and for which the change in energy is +157 kJ . Is the work done on or by the system? Does the system expand or contract? (Ans: -103kJ)
4. Two liters of an ideal gas is expanded into a vacuum and the new volume is 4 L . If 500 J of heat flow out of the container, what is the change in internal energy of the system? (Ans: -500J)
5. One of the components of polluted air is NO. It is formed in the high temperature environment of internal combustion engines by the following reaction: $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g)(\Delta H=180 \mathrm{~kJ})$. Why are high temperatures needed to convert N_{2} and O_{2} to NO ?
6. Are the following processes exothermic or endothermic?
a. When solid KBr is dissolved in water, the solution gets colder.
b. Natural gas, CH_{4}, is burned in a furnace.
c. When concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to water, the solution gets very hot.
d. Water is boiled in a tea kettle.
7. The overall reaction in commercial heat packs can be represented as $4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)(\Delta H=-1652 \mathrm{~kJ})$
a. How much heat is released when 4.00 mol iron is reacted with excess O_{2} ? (Ans: - 1652 kJ)
b. How much heat is released when 1.00 mol of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is produced? (Ans: - 826 kJ)
c. How much heat is released when 1.00 g of iron is reacted with excess O_{2} ? (Ans: -7.40 kJ)
d. How much heat is released when 10.0 g Fe and $2.00 \mathrm{~g} \mathrm{O}_{2}$ are reacted? (Ans: -34.4kJ)
8. How much heat is transferred when 147 g of NO_{2} reacts with $100 . \mathrm{g}_{2} \mathrm{O}$ according to the following equation:

$$
3 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}+\mathrm{NO} \quad \Delta H=-138 \mathrm{~kJ}(\text { Ans: }-147 \mathrm{~kJ})
$$

WS\#2: CALORIMETRY

Measuring heat (formerly measured in calories) is called calorimetry. Now we measure heat energy in Joules (J). The equation we use is:

$$
\begin{array}{ll}
q=\mathrm{m} \times C_{\mathrm{p}} \times \Delta T & q=\text { heat energy, } \mathrm{m}=\text { mass of water, } C_{\mathrm{p}}=\text { the specific heat capacity, and } \\
\Delta T=\text { the change in temperature }\left(\text { in }{ }^{\circ} \mathrm{C} \text { or } \mathrm{K}\right)
\end{array}
$$

1. Water has a specific heat capacity of $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. This means it takes 4.184 J to heat 1.00 gram of water $1.00^{\circ} \mathrm{C}$.
a. How much energy will it take to heat 10.0 grams of water $1^{\circ} \mathrm{C}$? \qquad (Ans: 41.84J)
b. How much energy is needed to heat $30.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ from $10.0^{\circ} \mathrm{C}$ to $50.0^{\circ} \mathrm{C}$? \qquad (Ans: 5020.8J)
2. Let's try a standard calorimetry problem. A pot of water (2.5 liters of water) initially at $25.0^{\circ} \mathrm{C}$ is heated to boiling (100. ${ }^{\circ} \mathrm{C}$).
a. How much energy (in J) is needed to heat the water? (The density of water is $1.00 \mathrm{~g} / \mathrm{mL}$.). (Ans: $780,000 \mathrm{~J}$)
b. What would this amount of heat be in kJ ? \qquad (Ans: 780kJ)
3. What amount of heat is released when 175 g of water cools from $100 .{ }^{\circ} \mathrm{C}$ to room temperature, $20.0^{\circ} \mathrm{C}$? (Ans: -59kJ)
4. We don't always have to warm up or cool down water. The specific heat capacity of copper metal is $0.39 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$.
a. It is \qquad (easier/more difficult) to heat up copper than to heat up water.
b. How much energy would it take to heat up a 5.20 g sample of copper from $20.0^{\circ} \mathrm{C}$ to $100 .^{\circ} \mathrm{C}$? (Ans: 160 J)
5. If $300 . \mathrm{J}$ of heat energy were used to heat up a 5.00 gram sample of copper metal and a 5.00 gram sample of water both starting at $10.0^{\circ} \mathrm{C}$, calculate the final temperature of each sample? (Ans: $163.8^{\circ} \mathrm{C}$ and $24.3^{\circ} \mathrm{C}$)
Signs of ΔT and $\boldsymbol{q}:-\boldsymbol{q}$ means heat is released. $+\boldsymbol{q}$ means heat is absorbed. ΔT is always final temperature initial temperature ($T_{\mathrm{f}}-T_{\mathrm{i}}$). If something is getting hotter $\left(10^{\circ} \rightarrow 30^{\circ}\right)$, the ΔT is $30-10=+20^{\circ}$. (heat is absorbed)
If something is getting cooler $\left(75^{\circ} \rightarrow 25^{\circ}\right)$, the ΔT is $25-75=-50^{\circ}$. (heat is released)
6. Suppose we mix 90.0 grams of hot water $\left(90.0^{\circ} \mathrm{C}\right)$ with 10.0 grams of cold water $\left(10.0^{\circ} \mathrm{C}\right)$. Let $x=$ the final temperature. $\mathrm{C}=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
a. Set up an expression for the energy released (q) by the hot water $\left(\Delta q_{\text {hot }}=\mathrm{m}_{\text {hot }} \mathrm{X} C_{\mathrm{p}} \times \Delta T_{\text {hot }}\right)$
b. Set up an expression for the energy absorbed (q) by the cold water $\left(\Delta q_{\text {cold }}=\mathrm{m}_{\text {cold }} \mathrm{X} C_{\mathrm{p}} \mathrm{x} \Delta T_{\text {cold }}\right)$
c. Knowing that the heat released $=-$ heat absorbed, combine the two expressions and solve for x. (Ans: $82^{\circ} \mathrm{C}$)
7. We don't always have to use water. Let's use some aluminum shot. 175 grams of hot aluminum (100. ${ }^{\circ} \mathrm{C}$) is dropped into an insulated cup that contains 40.0 mL of ice cold water $\left(0.0^{\circ} \mathrm{C}\right)$. Follow the example above to determine the final temperature, x. (a) Set up an expression for the heat lost by the aluminum ($C_{\mathrm{p}}=0.900 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$). (b) Set up an expression for the heat gained by the cold water. (c) Put the two expressions together (don't forget to change one of the signs) and solve for x. (Ans: $48.5^{\circ} \mathrm{C}$)
8. Somewhat Confusing Definitions:

There are several terms used in this chapter that sound very similar. Use the data provided to calculate each of them to clarify the differences. I've added some "Notes" that I hope will help. 74.8 J of heat is required to raise the temperature of 18.69 g of silver from $10.0^{\circ} \mathrm{C}$ to $27.0^{\circ} \mathrm{C}$.
a. What is the heat capacity of the silver sample? $\left(\mathrm{J} /{ }^{\circ} \mathrm{C}\right)$. Note: This is a useful value only for this specific sample of silver. (Ans: $4.4 \mathrm{~J} /{ }^{\circ} \mathrm{C}$)
b. What is the specific heat capacity of silver? $\left(\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$ (Ans: $\left.0.235 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$

Note: This is a useful value for any sample of silver that is heated or cooled.
This is equivalent to the $4.184 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}$ that we use for water. This value is also called the specific heat.
9. $\quad 1.150 \mathrm{~g}$ of sucrose goes through combustion in a bomb calorimeter. If the temperature rose from $23.42^{\circ} \mathrm{C}$ to $27.64^{\circ} \mathrm{C}$ and the heat capacity of the calorimeter is $4.90 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$, then determine the heat of combustion of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, in kJ per mole of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$. (Ans: - $6160 \mathrm{~kJ} / \mathrm{mol}$)
10. The following data was collected in an experiment similar to the Specific Heat experiment performed in class. Fill in the missing values. (Assume the calorimeter has a calorimeter constant of $0 \mathrm{~J} /{ }^{\circ} \mathrm{C}$)

Data \& Calculations		Glass Beads
	mass of glass beads	4.88 g
	mass of water	10.14 g
	initial temperature of water	$19.2^{\circ} \mathrm{C}$
	initial temperature of beads	$89.2^{\circ} \mathrm{C}$
	final temperature of mixture	$24.8^{\circ} \mathrm{C}$
	temp change of water $\left({ }^{\circ} \mathrm{C}\right)$	
	temp change of hot beads $\left({ }^{\circ} \mathrm{C}\right)$	
	change in energy of water, $\mathrm{q}_{\text {water }}(\mathrm{J})$	
	change in energy of calorimeter (J)	0 J
	change in energy of beads, $\mathrm{q}_{\text {beads }}(\mathrm{J})$	
	specific heat of beads $\left(\mathrm{J} \cdot \mathrm{g}^{-1 \cdot{ }^{\circ} \mathrm{C}} \mathrm{C}^{-1}\right)$	
	accepted value of specific heat	.833
	$\%$ error	

WS\#3: Heat of Formation ($\Delta H_{\mathrm{F}}{ }^{0}$), Hess's Law, and Bond Enthalpy

1. Calculate the standard enthalpy of combustion for the following reaction: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{CO}_{2}(g)+$ $6 \mathrm{H}_{2} \mathrm{O}(l)$. To solve this problem, we must know the following $\Delta H_{\mathrm{f}}{ }_{\mathrm{f}}$ values: (Ans: - $2801 \mathrm{~kJ} / \mathrm{mol}$)

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)$	-1275.0	$\mathrm{CO}_{2}(g)$	-393.5
$\mathrm{O}_{2}(g)$	zero	$\mathrm{H}_{2} \mathrm{O}(l)$	-285.8

2. Complete combustion of 1.00 mol of acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ liberates $1790 \mathrm{~kJ}: \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}(l)+4 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$ +1790 kJ . Using this information along with the data below (values in $\mathrm{kJ} / \mathrm{mol}$), calculate the enthalpy of formation of acetone. $\left(\Delta H_{\mathrm{f}, \mathrm{CO} 2}:-393.5 \mathrm{~kJ} / \mathrm{mol}\right.$ and $\left.\Delta H^{\circ}{ }_{\mathrm{f}, \mathrm{H} 2 \mathrm{O}}:-285.83 \mathrm{~kJ} / \mathrm{mol}\right)($ Ans: $-248 \mathrm{~kJ} / \mathrm{mol}$)
3. Ammonia reacts with oxygen to form nitrogen dioxide and steam, as follows: $4 \mathrm{NH}_{3}(g)+7 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+$ $6 \mathrm{H}_{2} \mathrm{O}(g)$. Given the following standard enthalpies of formation (given in $\mathrm{kJ} / \mathrm{mol}$), calculate the enthalpy of the reaction. Note that water is given as a gas. Normally, water as a liquid is used in problems. Not in this one. (Ans: -1135kJ)

$\mathrm{NH}_{3}(g)$	-45.90	$\mathrm{NO}_{2}(g)$	+33.1	$\mathrm{H}_{2} \mathrm{O}(g)$	-241.83

4. The standard enthalpy change, ΔH°, for the thermal decomposition of silver nitrate according to the following equation is $+78.67 \mathrm{~kJ}: \mathrm{AgNO}_{3}(s) \rightarrow \mathrm{AgNO}_{2}(s)+(1 / 2) \mathrm{O}_{2}(g)$. The standard enthalpy of formation of $\mathrm{AgNO}_{3}(s)$ is $123.02 \mathrm{~kJ} / \mathrm{mol}$. Calculate the standard enthalpy of formation of $\mathrm{AgNO}_{2}(s)$ (Ans: -44.35kJ)
5. Calculate the enthalpy for this reaction: $2 \mathrm{C}(s)+\mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(g)$. (Ans: +226.7 kJ)

$$
\begin{array}{ll}
2 \mathrm{C}_{2} \mathrm{H}_{2}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) & \Delta H^{\circ}=-2599 \mathrm{~kJ} \\
\mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) & \Delta H^{\circ}=-393.5 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) & \Delta H^{\circ}=-571.6 \mathrm{~kJ}
\end{array}
$$

6. Given the following information:

$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$	$\Delta H^{\mathrm{o}}=-116 \mathrm{~kJ}$
$2 \mathrm{~N}_{2}(g)+5 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{HNO}_{3}(\mathrm{aq})$	$\Delta H^{\mathrm{o}}=-256 \mathrm{~kJ}$
$\mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$	$\Delta H^{\mathrm{o}}=+183 \mathrm{~kJ}$

Calculate the enthalpy change for the reaction below: $3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)$ (Ans: $\left.-137 \mathrm{~kJ}\right)$
7. Calculate ΔH for this reaction: $\mathrm{ClF}(g)+\mathrm{F}_{2}(g) \rightarrow \mathrm{ClF}_{3}(g)$ given: (Ans: -108.7kJ)

$2 \mathrm{CIF}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{Cl}_{2} \mathrm{O}(g)+\mathrm{F}_{2} \mathrm{O}(g)$	$\Delta H^{\mathrm{o}}=167.4 \mathrm{~kJ}$
$2 \mathrm{CIF}_{3}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{Cl}_{2} \mathrm{O}(g)+3 \mathrm{~F}_{2} \mathrm{O}(g)$	$\Delta H^{\mathrm{o}}=341.4 \mathrm{~kJ}$
$2 \mathrm{~F}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~F}_{2} \mathrm{O}(g)$	$\Delta H^{\mathrm{o}}=-43.4 \mathrm{~kJ}$

8. Using bond enthalpies, calculate the reaction enthalpy (ΔH) for: $\mathrm{CH}_{4}(g)+\mathrm{Cl}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{Cl}(g)+\mathrm{HCl}(g)$. Bond enthalpies (in $\mathrm{kJ} / \mathrm{mol}$): $\mathrm{C}-\mathrm{H}(413)$; $\mathrm{Cl}-\mathrm{Cl}$ (239); $\mathrm{C}-\mathrm{Cl}$ (339); $\mathrm{H}-\mathrm{Cl}$ (427) (Ans: -114kJ)
9. What is the enthalpy of reaction for the following equation: $2 \mathrm{CH}_{3} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)$. Given the following bond enthalpies (in $\mathrm{kJ} / \mathrm{mol}$): $\mathrm{C}-\mathrm{H}(414) ; \mathrm{C}-\mathrm{O}(360) ; \mathrm{C}=\mathrm{O}(799) ; \mathrm{O}=\mathrm{O}$ (498); $\mathrm{O}-\mathrm{H}(464)$ (Ans: $-1282 \mathrm{~kJ})$
10. Calculate the bond energy of the Cl-F bond using the following data: $\mathrm{Cl}_{2}(g)+\mathrm{F}_{2}(g) \rightarrow 2 \mathrm{ClF}(g), \Delta H=-108 \mathrm{~kJ}$. Bond enthalpies (in $\mathrm{kJ} / \mathrm{mol}$): $\mathrm{Cl}-\mathrm{Cl}(239) ; \mathrm{F}-\mathrm{F}$ (159) (Ans: 253kJ for the $\mathrm{Cl}-\mathrm{F}$ bond)
11. The reaction of H_{2} with F_{2} produces HF with $\Delta H=-269 \mathrm{~kJ} / \mathrm{mol}$ of HF . If the $\mathrm{H}-\mathrm{H}$ and $\mathrm{H}-\mathrm{F}$ bond energies are 432 and $565 \mathrm{~kJ} / \mathrm{mol}$, respectively, what is the F-F bond energy? $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{g})$ (Ans: 160 kJ for the F-F bond)

WS\#4: Entropy

1. Which of the following processes are spontaneous?
a. Salt dissolves in water.
c. Iron rusts
b. A clear solution becomes a uniform color
d. You clean your bedroom. after a few drops of dye are added.
2. Choose the compound with the greatest positional entropy in each case.
a. $1 \mathrm{~mol} \mathrm{H}_{2}($ at STP$)$ or $1 \mathrm{~mol}_{2}\left(\right.$ at $100^{\circ} \mathrm{C}$,
b. $1 \mathrm{~mol} \mathrm{~N}_{2}$ (at STP) or $1 \mathrm{~mol} \mathrm{~N}_{2}$ (at $100 \mathrm{~K}, 2.0 \mathrm{~atm}$) $0.5 \mathrm{~atm})$
c. $1 \mathrm{~mol}_{2} \mathrm{O}(s)\left(\right.$ at $\left.0^{\circ} \mathrm{C}\right)$ or $1 \mathrm{~mol}_{2} \mathrm{O}(l)\left(\right.$ at $\left.20^{\circ} \mathrm{C}\right)$
3. Which of the following involves an increase in entropy of the system?
a. melting of a solid
c. freezing
e. separation
b. sublimation
d. mixing
f. boiling
4. Predict the sign of $\Delta S_{\text {surr }}$ for the following processes.
a. $\quad \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)$
d. $2 \mathrm{SO}_{3}(g) \rightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$
b. $\mathrm{CO}_{2}(g) \rightarrow \mathrm{CO}_{2}(s)$
e. $\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{Fe}(s)+3 \mathrm{H}_{2} \mathrm{O}(g)$
c. $2 \mathrm{H}_{2} \mathrm{~S}(g)+\mathrm{SO}_{2}(g) \rightarrow 3 \mathrm{~S}_{\text {rhombic }}(s)+2 \mathrm{H}_{2} \mathrm{O}(g)$
5. Calculate $\Delta S_{\text {surr }}$ for the following reactions at $25^{\circ} \mathrm{C}$ and 1 atm .
a. $\quad \mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g) \Delta H^{\circ}=-2221 \mathrm{~kJ}($ Ans: $+7453 \mathrm{~J} / \mathrm{K})$
b. $2 \mathrm{NO}_{2}(g) \rightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \Delta H^{\circ}=112 \mathrm{~kJ}$ (Ans: $-376 \mathrm{~J} / \mathrm{K}$)
6. Ethanethiol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SH}\right.$; also called ethyl mercaptan) is commonly added to natural gas to provide he "rotten egg" smell of a gas leak. The boiling point of ethanethiol is $35^{\circ} \mathrm{C}$ and its heat of vaporization is $27.5 \mathrm{~kJ} / \mathrm{mol}$. What is the entropy of vaporization for this substance? (An:89.3J/K-mol)
7. For ammonia, NH_{3}, the enthalpy of fusion is $5.65 \mathrm{~kJ} / \mathrm{mol}$ and the entropy of fusion is $28.9 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$.
a. Will $\mathrm{NH}_{3}(s)$ spontaneously melt at 200.K?
b. What is the approximate melting point of ammonia? (Ans: a. yes, $\Delta G<0$, b. 196 K)
8. Determine the standard entropy change for the decomposition of one mole of solid calcium carbonate, forming solid calcium oxide and carbon dioxide gas. $\quad \mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)\left(\Delta S^{\circ}\right.$ for $\mathrm{CaO}(s)$ is $39.8 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \Delta S^{\circ}$ for $\mathrm{CO}_{2}(\mathrm{~g})$ is $213.7 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$, and ΔS° for $\mathrm{CaCO}_{3}(s)$ is $\left.92.9 \mathrm{~J} / \mathrm{mol}-\mathrm{K}\right)$

WS\#5: Free Energy

1. Define Gibb's Free energy.
2. Given the values for ΔH and ΔS, which of the following changes will be spontaneous at constant T and P ?
a. $\Delta H=+25 \mathrm{~kJ}, \Delta S=+5.0 \mathrm{~J} / \mathrm{K}, T=300 . \mathrm{K}$
c. $\Delta H=-10 . \mathrm{kJ}, \Delta S=+5.0 \mathrm{~J} / \mathrm{K}, T=298 \mathrm{~K}$ (Ans: - $11.5 \mathrm{~kJ} / \mathrm{mol}$)
b. $\Delta H=+25 \mathrm{~kJ}, \Delta S=+100 . \mathrm{J} / \mathrm{K}, T=300 . \mathrm{K}$
(Ans: -5kJ/mol)
d. $\Delta H=-10 . \mathrm{kJ}, \Delta S=-40 \mathrm{~J} / \mathrm{K}, T=200 . \mathrm{K}$ (Ans: -2.0kJ/mol)
3. Describe how the sign of ΔG determines the spontaneity of a reaction:
a. $\Delta G>0$
b. $\Delta G<0$
c. $\Delta G=0$
4. Given the following thermodynamics values, determine how temperature affects the spontaneity of the reaction. Is the reaction enthalpy, entropy driven, both, or neither (compare ΔH vs (-T ΔS).
a. $\Delta H=+327 \mathrm{~kJ} / \mathrm{mol}, \Delta S=+127 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
b. $\Delta H=-187 \mathrm{~kJ} / \mathrm{mol}, \Delta S=-298 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
c. $\Delta H=+194 \mathrm{~kJ} / \mathrm{mol}, \Delta S=-4.0 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
d. $\Delta H=-397 \mathrm{~kJ} / \mathrm{mol}, \Delta S=+653 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
5. For each reaction below, determine the temperature at which the reaction will be spontaneous.
a. $\Delta H=+245 \mathrm{~kJ} / \mathrm{mol}, \Delta S=+48 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
c. $\Delta H=-456 \mathrm{~kJ} / \mathrm{mol}, \Delta S=-38 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$ (Ans: 12,000K) (Ans: 5104K)
d. $\Delta H=-547 \mathrm{~kJ} / \mathrm{mol}, \Delta S=-97 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$ (Ans: 5639K)
6. $\Delta H^{\mathrm{o}}=131.4 \mathrm{~kJ}$ and $\Delta G^{\mathrm{o}}=91.2 \mathrm{~kJ}$ for the reaction $\mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$. Calculate ΔS^{o} in J / K for this reaction at $25^{\circ} \mathrm{C}$. (Ans: $135 \mathrm{~J} / \mathrm{K}$)
7. Using the values of $\Delta G^{\mathrm{o}} \mathrm{f}$, calculate the $\Delta G^{\mathrm{o}}{ }_{\mathrm{rxn}}$ of each of the reactions below. Is each reaction spontaneous at standard conditions? $\Delta G^{\circ}{ }_{\mathrm{f}}\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)=100 \mathrm{~kJ} / \mathrm{mol}, \Delta G_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{NO}_{2}\right)=51 \mathrm{~kJ} / \mathrm{mol}, \Delta G_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)=-203 \mathrm{~kJ} / \mathrm{mol}, \Delta G^{\mathrm{o}}\left(\mathrm{NH}_{3}\right)$ $=-16 \mathrm{~kJ} / \mathrm{mol}, \Delta G^{\mathrm{o}}(\mathrm{HCl})=-95 \mathrm{~kJ} / \mathrm{mol}, \Delta G^{\mathrm{o}}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=-742 \mathrm{~kJ} / \mathrm{mol}, \Delta G_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}\right)=-229 \mathrm{~kJ} / \mathrm{mol}$
a. $\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$ (Ans: 2 kJ)
b. $\mathrm{NH}_{4} \mathrm{Cl}(l) \rightarrow \mathrm{NH}_{3}(g)+\mathrm{HCl}(g)$ (Ans: 92 kJ$)$
c. $3 \mathrm{H}_{2}(g)+\mathrm{Fe}_{2} \mathrm{O}_{3}(s) \rightarrow 2 \mathrm{Fe}(s)+3 \mathrm{H}_{2} \mathrm{O}(g)$ (Ans: 55 kJ$)$
d. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ (Ans: $\left.-32 \mathrm{~kJ}\right)$
8. Calculate ΔG for the reaction $\mathrm{NO}(g)+\mathrm{O}_{3}(g) \rightarrow \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$ for these conditions:
$T=298 \mathrm{~K}, P_{\mathrm{NO}}=1.00 \times 10^{-6} \mathrm{~atm}, \mathrm{P}_{\mathrm{O} 3}=2.00 \times 10^{-6} \mathrm{~atm}, P_{\mathrm{NO} 2}=1.00 \times 10^{-7} \mathrm{~atm}$, and $P_{\mathrm{O} 2}=1.00 \times 10^{-3} \mathrm{~atm}$
$\Delta G_{f}^{\mathrm{o}}(\mathrm{NO})=87 \mathrm{~kJ} / \mathrm{mol}, \Delta G_{f}^{\mathrm{o}}\left(\mathrm{O}_{3}\right)=163 \mathrm{~kJ} / \mathrm{mol}$, and $\Delta G_{f}^{\mathrm{o}}\left(\mathrm{NO}_{2}\right)=52 \mathrm{~kJ} / \mathrm{mol}$ (Ans: $\left.-188 \mathrm{~kJ}\right)$
9. Coupling of the two reactions below affords the overall reaction: $\mathrm{Fe}_{3} \mathrm{O}_{4}(s)+2 \mathrm{C}(s) \rightarrow 3 \mathrm{Fe}(s)+2 \mathrm{CO}_{2}(g)$. What is the value of ΔG° for this reaction? (Ans: $+225.4 \mathrm{~kJ} / \mathrm{mol}$)

$$
\begin{array}{ll}
\mathrm{Fe}_{3} \mathrm{O}_{4}(s) \rightarrow 3 \mathrm{Fe}(s)+2 \mathrm{O}_{2}(g) & \Delta G^{\mathrm{o}}=1014.2 \mathrm{~kJ} \\
\mathrm{O}_{2}(g)+\mathrm{C}(s) \rightarrow \mathrm{CO}_{2}(g) & \Delta G^{\mathrm{o}}=-394.4 \mathrm{~kJ}
\end{array}
$$

10. Calculate the ΔG° for a reaction for which $K_{\mathrm{c}}=5.0 \times 10^{8}$ at $25^{\circ} \mathrm{C}$. (Ans:-50 kJ)
11. Given that ΔG_{f} for IBr is $1.3 \mathrm{~kJ} / \mathrm{mol}$, calculate K_{c} for the reaction at $25^{\circ} \mathrm{C}: \mathrm{I}_{2}+\mathrm{Br}_{2} \leftrightarrow 2 \operatorname{IBr}$ (Ans: 0.35)
12. A particular reaction has an equilibrium constant of 0.48 at $25^{\circ} \mathrm{C}$. What is the value of ΔG° (in kJ)? (Ans: 1.8)
(Move to Electrochemistry)
13. What is n ?
14. What is F ?
15. Write the equation that relates ΔG° to E° ?
16. For each of the following equations, what must n be?
e. $\mathrm{Cu}^{2}+\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+\mathrm{Cu}$
f. $2 \mathrm{Ag}^{1+}+\mathrm{Sn} \rightarrow 2 \mathrm{Ag}+\mathrm{Sn}^{2+}$
g. $2 \mathrm{Al}+3 \mathrm{~Pb}^{2+} \rightarrow 3 \mathrm{~Pb}+2 \mathrm{Al}^{3+}$
17. What is the ΔG° of the following batteries?
h. $\mathrm{Cu}^{2}+\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+\mathrm{Cu}$ (Ans: -523kJ)
i. $2 \mathrm{Ag}^{1+}+\mathrm{Sn} \rightarrow 2 \mathrm{Ag}+\mathrm{Sn}^{2+}$ (Ans: -181 kJ)
j. $2 \mathrm{Al}+3 \mathrm{~Pb}^{2+} \rightarrow 3 \mathrm{~Pb}+2 \mathrm{Al}^{3+}$ (Ans: -886 kJ)
18. What sign must each of the following be for a battery?
k. E^{0}
19. ΔG^{o}

WS\#6: MC Review Questions
 Thermochemistry

Use the following information to answer questions 1 and 2.
Aluminum reacts with hydrochloric acid according to the following equation:

$$
2 \mathrm{Al}(s)+6 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{AlCl}_{3}(a q)+3 \mathrm{H}_{2}(g)
$$

1. If a sample of 27.0 g of aluminum metal is added to 333 mL of 3.0 M hydrochloric acid, the volume of hydrogen gas produced at standard temperature and pressure is
a. 2.80 L
b. 5.60 L
c. 11.2 L
d. 22.4 L
2. What is the approximate density of the hydrogen gas produced at STP?
a. $\quad 0.1 \mathrm{~g} / \mathrm{L}$
b. $0.2 \mathrm{~g} / \mathrm{L}$
c. $0.3 \mathrm{~g} / \mathrm{L}$
d. $0.4 \mathrm{~g} / \mathrm{L}$
3. Given the following data.

Calculate the $\Delta H^{\circ}{ }_{r x n}$ for the following reaction.

Substance	$H^{\circ}{ }_{f}(\mathrm{~kJ} / \mathrm{mol})$
$\mathrm{CO}_{2}(g)$	-393.5
$\mathrm{H}_{2} \mathrm{O}(g)$	-285.8
$\mathrm{C}_{4} \mathrm{H}_{10}(g)$	-124.7

$2 \mathrm{C}_{4} \mathrm{H}_{10}(g)+13 \mathrm{O}_{2}(g) \rightarrow 8 \mathrm{CO}_{2}(g)+10 \mathrm{H}_{2} \mathrm{O}(g)$
a. $\quad-6255.4 \mathrm{~kJ}$
b. -5756.6 kJ
c. -40.6 kJ
d. 539.4 kJ
4. Consider the reaction shown:

$\Delta H_{\mathrm{rxn}}{ }^{\mathrm{r}}$ for the combustion reaction represented above, where each molecule represents one mole of that substance. Assume that all states are those that are listed in the table

Substance	$\left.\boldsymbol{\Delta} \boldsymbol{H}_{\mathbf{r}}^{\mathbf{o}} \mathbf{(k \mathbf { k }} / \mathbf{m o l}\right)$
$\mathrm{CO}_{2}(g)$	-393.5
$\mathrm{H}_{2} \mathrm{O}(g)$	-285.8
$\mathrm{CH}_{3} \mathrm{OH}(g)$	-201.0

a. $\quad-2332.2 \mathrm{~kJ}$
b. -1528.2 kJ
c. -478.3 kJ
d. 45.8 kJ
5. Which of the following graphs describes a pathway of reaction that is exothermic with a high activation energy?
a.

b.

c.

d.

6. One cup of ice has a mass of approximately 250 g . The ice is at $0.0^{\circ} \mathrm{C}$. How much heat is required to melt the ice and then warm the resulting water $25.0^{\circ} \mathrm{C}$? A table of useful information is provided.

Heat of fusion of $\mathrm{H}_{2} \mathrm{O}(s)$	$332 \mathrm{~kJ} / \mathrm{kg}$
Specific heat of $\mathrm{H}_{2} \mathrm{O}(l)$	$4.18 \mathrm{~J} /{ }^{\circ} \mathrm{C}-\mathrm{g}$

a. 25 kJ
b. 58 kJ
c. 83 kJ
d. 110 kJ
7. A $20 . \mathrm{g}$ sample of metal at $100^{\circ}-\mathrm{C}$ is placed into $30 . \mathrm{g}$ of kerosene at $35^{\circ} \mathrm{C}$. The final temperature of both the kerosene and the metal is $60^{\circ} \mathrm{C}$. If the specific heat of kerosene is $2.0 \mathrm{~J} /{ }^{\circ} \mathrm{C}-\mathrm{g}$, what is the specific heat of the metal?
a. $\quad 1.0 \mathrm{~J} /{ }^{\circ} \mathrm{C}-\mathrm{g}$
b. $1.5 \mathrm{~J} /{ }^{\circ} \mathrm{C}-\mathrm{g}$
c. $2.0 \mathrm{~J} /{ }^{\circ} \mathrm{C}-\mathrm{g}$
d. $2.5 \mathrm{~J} /{ }^{\circ} \mathrm{C}-\mathrm{g}$
8. Calculate the enthalpy change for the following reaction given the information below. $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+$ $3 \mathrm{CO}_{2}(\mathrm{~g})$.

$$
\begin{array}{lll}
& \mathrm{C}(\text { graphite })+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) & \Delta H=\mathrm{W} \mathrm{~kJ} \\
& 4 \mathrm{Al}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(s) & \Delta H=\mathrm{X} \mathrm{~kJ} \\
& 2 \mathrm{Al}(s)+9 / 2 \mathrm{O}_{2}(g)+3 \mathrm{C}(\text { graphite }) \rightarrow \mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}(s) & \Delta H=\mathrm{Y} \mathrm{~kJ} \\
\text { a. } \mathrm{W}+\mathrm{X}+\mathrm{Y} & \text { c. } 3 \mathrm{~W}+1 / 2 \mathrm{X}+\mathrm{Y} \\
\text { b. } 3 \mathrm{~W}+\mathrm{X}-\mathrm{Y} & \text { d. } 3 \mathrm{~W}+1 / 2 \mathrm{X}-\mathrm{Y}
\end{array}
$$

9. In which of the following isothermal expansions of an ideal gas is the work done by the system the largest? Assume the temperature is the same for all choices.
a. from 1 to 5 L against an opposing pressure of $1 / 2 \mathrm{~atm}$.
b. from 1 to 5 L against an opposing pressure of 1 atm .
c. from 1 to 5 L against an opposing pressure of 3 atm .
d. from 1 to 10 L against an opposing pressure of 2 atm .
10. Consider four 100.0 g samples of water, each in a separate beaker at $25^{\circ} \mathrm{C}$. Into each beaker your drop 10.0 g of a different metal that has been heated to $95^{\circ} \mathrm{C}$. Assume no heat loss to the surroundings, which water sample will have the lowest final temperature?
a. the water to which you have added aluminum $\left(s=0.89 \mathrm{~J} /{ }^{\circ} \mathrm{C}-\mathrm{g}\right)$
b. the water to which you have added iron $\left(s=0.45 \mathrm{~J} /{ }^{\circ} \mathrm{C}-\mathrm{g}\right)$
c. the water to which you have added copper $\left(s=0.20 \mathrm{~J} /{ }^{\circ} \mathrm{C}-\mathrm{g}\right)$
d. the water to which you have added lead $\left(s=0.14 \mathrm{~J} /{ }^{\circ} \mathrm{C}-\mathrm{g}\right) \quad \mathrm{q}=10 \times \mathrm{s} \times \mathrm{T}$
11. A student performs a neutralization reaction involving an acid and a base in an open polystyrene coffee-cup calorimeter. How would the calculated value of ΔH differ from the actual value if there was significant heat loss to the surroundings?
a. $\Delta H_{\text {calc }}$ would be negative, but more negative than actual value.
b. $\Delta H_{\text {calc }}$ would be negative, but less negative than actual value.
c. $\Delta H_{\text {calc }}$ would be positive, but more positive than actual value.
d. $\Delta H_{\text {calc }}$ would be positive, but less positive than the actual value.
12. Which of the following is endothermic?
a. Water freezes to form ice.
c. Ice cream melts.
b. Steam condenses on a bathroom mirror.
d. Coffee cools as it sits.
13. At $25^{\circ} \mathrm{C}$, the following heats of reaction are known:

$$
\begin{array}{ll}
2 \mathrm{C}_{2} \mathrm{H}_{2}(g)+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) & \Delta H=-2600.0 \mathrm{~kJ} \\
\mathrm{C}_{(\text {graphite })}+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) & \Delta H=-394 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) & \Delta H=-574 \mathrm{~kJ}
\end{array}
$$

At the same temperature, calculate the ΔH for the reaction $2 \mathrm{C}_{\text {(graphite) }}+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$
a. -2422 kJ
b. -225 kJ
c. 225 kJ
d. 2422 kJ
14. Using Hess's law and the equation below find ΔH° at $25^{\circ} \mathrm{C}$ for the oxidation of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})$.

$$
\begin{array}{ll}
\mathrm{C}_{2} \mathrm{H}_{4}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) & \Delta H^{0}=\mathrm{W} k J \\
2 \mathrm{C}(g r a p h i t e)+3 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) & \Delta H^{\mathrm{o}}=\mathrm{X} \mathrm{~kJ} \\
\mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) & \Delta H^{\mathrm{o}}=\mathrm{Y} k J
\end{array}
$$

a. $\quad \mathrm{W}-\mathrm{Y}$
b. $\mathrm{X}-2 \mathrm{Y}$
c. $\mathrm{X}+2 \mathrm{~W}+\mathrm{Y}$
d. $2 \mathrm{X}-\mathrm{W}+\mathrm{Y}$
15. A popular demonstration is to drop a piece of sodium metal into water. The products are sodium hydroxide and hydrogen gas. Determine $\Delta H_{r x n}$ for this reaction for 1.00 mol of hydrogen gas being produced, given
$\Delta H_{f}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(l)\right]=-286 \mathrm{~kJ} / \mathrm{mol} \quad$ and $\quad \Delta H_{f}^{\mathrm{o}}[\mathrm{NaOH}(l)]=-470 \mathrm{~kJ} / \mathrm{mol}$
a. -368 kJ
b. -184 kJ
c. 184 kJ
d. 368 kJ
16. Consider the freezing of liquid water at $-10^{\circ} \mathrm{C}$ and 1 atm . For this process, what are the signs for $\Delta H, \Delta S$, and ΔG ?
a.,,+- 0
b.,,-+ 0
c.,,++-
d. -, -, -
17. A 100 mL sample of water is placed in a coffee-cup calorimeter. Solid NaCl is then dissolved in the water. The temperature of the water decreases from $20.5^{\circ} \mathrm{C}$ to $19.7^{\circ} \mathrm{C}$ and is then allowed to return to room temperature ($20.5^{\circ} \mathrm{C}$). Determine the signs for ΔH and ΔS for the process of dissolving NaCl and ΔG for the entire process at constant temperature.
a.,,+- 0
b.,,-+ 0
c.,,++
d. -, -, -
18. Which reaction would have the most positive ΔS ?
a. $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(l)$
b. $2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
c. $\mathrm{HCl}(g)+\mathrm{NH}_{3}(g) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(s)$
d. $\mathrm{Ba}(\mathrm{OH})_{2} \bullet 8 \mathrm{H}_{2} \mathrm{O}(s)+2 \mathrm{NH}_{3} \mathrm{NO}_{3}(s) \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(s)+2 \mathrm{NH}_{3}(g)+10 \mathrm{H}_{2} \mathrm{O}(l)$
19. Solutions A and B are both clear and colorless. When Solution A is mixed with Solution B, the temperature of the mixture increases and a yellow precipitate is observed. What can be concluded form these observations?
a. The reaction is thermodynamically favored (spontaneous) at all temperatures.
b. The reaction is thermodynamically favored (spontaneous) only at high temperatures.
c. The reaction is thermodynamically favored (spontaneous) only at low temperatures.
d. The reaction is thermodynamically not favored (spontaneous) at any temperature.

Questions 20-23 refer to the following information:
The removal of copper from metallic ores has been a challenge since ancient times. Strong heating of copper (II) carbonate results in the formation of copper (II) oxide.
Although the decomposition of copper (II) oxide into copper metal and oxygen gas is not thermodynamically favorable under standard conditions, it may be made favorable by adding carbon to the mixture

The resulting reaction is: $2 \mathrm{CuO}(s)+\mathrm{C}(s) \rightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}_{2}(g)$

$$
\begin{array}{ll}
\mathrm{CuO}(s) \rightarrow \mathrm{Cu}(s)+1 / 2 \mathrm{O}_{2}(g) & \Delta G^{\mathrm{o}}=128 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) & \Delta G^{\mathrm{o}}=-394 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

20. Calculate ΔG° for the overall reaction:
a. $-138 \mathrm{~kJ} / \mathrm{mol}$
b. $-266 \mathrm{~kJ} / \mathrm{mol}$
c. $522 \mathrm{~kJ} / \mathrm{mol}$
d. $650 \mathrm{~kJ} / \mathrm{mol}$
21. Predict and justify the sign of ΔS° for the reaction $\mathrm{CuO}(s) \rightarrow \mathrm{Cu}(s)+1 / 2 \mathrm{O}_{2}(g)$.
a. ΔS is positive because ΔG is positive.
b. ΔS is negative because ΔG is positive.
c. ΔS is positive because the products have more moles of gas than the reactant.
d. ΔS is negative because the products have more moles of gas than the reactant.
22. Why is the overall process thermodynamically favorable?
a. Carbon serves as a catalyst to lower the activation energy of the reaction.
b. The process involves coupling a very thermodynamically favorable reaction with one that is not thermodynamically favored.
c. When two reactions are coupled, free energy is always released.
d. The addition of carbon speeds up the reaction because powdered carbon has a large surface area.
23. Which statement is correct about the value of K for the reaction $2 \mathrm{CuO}(s)+\mathrm{C}(s) \rightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}_{2}(g)$ at standard conditions?
a. $\quad K$ will be less than 1.
b. K will be 0 .
c. $\quad K$ will be between 0 and 1.
d. K will be greater than 1 .
24. Under normal conditions, an iron nail rusts so slowly that the reaction is not easily observed. What must be true?
a. The reaction occurs, but very slowly.
b. The product of the reaction is an invisible gas.
c. The reaction does not occur without a catalyst.
d. The reaction is not thermodynamically favorable.
25. Calculate the ΔG° for the following equation: $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{SO}_{3}(g)$.

$$
\Delta G_{f}^{\mathrm{o}}\left[\mathrm{SO}_{2}\right]=-300 \mathrm{~kJ} / \mathrm{mol} \quad \Delta G_{f}^{o}\left[\mathrm{SO}_{3}\right]=-371 \mathrm{~kJ} / \mathrm{mol}
$$

a. $\quad-71 \mathrm{~kJ} / \mathrm{mol}$
b. $-142 \mathrm{~kJ} / \mathrm{mol}$
c. $71 \mathrm{~kJ} / \mathrm{mol}$
d. $671 \mathrm{~kJ} / \mathrm{mol}$
26. How many joules are equivalent to 37.7 cal ?
a. 9.01 J
b. 4.184 J
c. $\quad 1.51 \mathrm{~J}$
d. 158 J
27. The quantity of heat that is needed to raise the temperature of a sample of a substance 1.00 degree is called its
a. heat capacity
c. enthalpy
b. specific heat
d. kinetic energy
28. Equal masses of two substances, $\mathrm{A} \& \mathrm{~B}$, each absorb 25 Joules of energy. If the temperature of A increases by 4 degrees and the temperature of B increases by 8 degrees, one can say that
a. the specific heat of A is double that of B.
c. the specific heat of B is negative.
b. the specific heat of B is double that of A.
d. the specific heat of B is triple that of A.
29. If 25 J are required to change the temperature of 5.0 g of substance A by $2.0^{\circ} \mathrm{C}$, what is the specific heat of substance A?
a. $\quad 250 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
b. $63 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
c. $\quad 10 . \mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}$
d. $2.5 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
30. How much energy is required to change the temperature of 2.00 g aluminum from $20.0^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$? The specific heat of aluminum is $0.902 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.
a. 2.3 J
b. 9.0 J
c. 0.36 J
d. 0.090 J
31. Consider the thermal energy transfer during a chemical process. When heat is transferred to the system, the process is said to be \qquad and the sign of ΔH is \qquad -
a. exothermic, positive
b. endothermic, negative
c. exothermic, negative
d. endothermic, positive
32. What is the ΔE for a system which has the following two steps:

Step 1: The system absorbs 60J of heat while 40J of work are performed on it.
Step 2: The system releases 30J of heat while doing 70J of work.
a. 100 J
b. 90 J
c. 30 J
d. zero
33. When two solutions react the container "feels hot." Thus,
a. the reaction is endothermic.
b. the reaction is exothermic.
c. the energy of the universe is increased.
d. the energy of both the system and the surroundings is decreased.
34. The equation for the standard enthalpy of formation of $\mathrm{N}_{2} \mathrm{O}_{3}$ is
a. $\quad \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}_{3}(g)$
b. $\quad \mathrm{N}_{2} \mathrm{O}_{5}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}_{3}(g)+\mathrm{O}_{2}(g)$
c. $\quad \mathrm{NO}(g)+\mathrm{NO}_{2}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}_{3}(g)$
d. $\quad \mathrm{N}_{2}(g)+3 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}_{3}(g)$
35. For the general reaction, $2 \mathrm{~A}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}, \Delta H$ is +50.0 kJ . We can conclude that
a. the reaction is endothermic.
b. the surroundings absorb energy.
c. the standard enthalpy of formation of $A B$ is -50.0 kJ .
d. the molecule AB contains less energy than A or B_{2}.
36. Calculate the enthalpy of combustion of $\mathrm{C}_{3} \mathrm{H}_{6}: \mathrm{C}_{3} \mathrm{H}_{6}(g)+{ }^{9}{ }_{2} \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$ using the following data:

$$
\begin{array}{ll}
3 \mathrm{C}(s)+3 \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{3} \mathrm{H}_{6}(g) & \Delta H^{\mathrm{o}}=53.3 \mathrm{~kJ} \\
\mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) & \Delta H^{0}=-394 \mathrm{~kJ} \\
\mathrm{H}_{2}(g)+{ }^{1} / \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) & \Delta H^{0}=-286 \mathrm{~kJ}
\end{array}
$$

a. $\quad-1517 \mathrm{~kJ}$
b. $\quad 1304 \mathrm{~kJ}$
c. -626 kJ
d. -2093 kJ
37. Which one of the following would have an enthalpy of formation value $\left(\Delta H_{\mathrm{f}}\right)$ of zero?
a. $\quad \mathrm{H}_{2} \mathrm{O}(g)$
b. $\mathrm{O}(g)$
c. $\mathrm{H}_{2} \mathrm{O}(l)$
d. $\mathrm{O}_{2}(g)$
38. Calculate the heat of vaporization of titanium (IV) chloride: $\mathrm{TiCl}_{4}(l) \rightarrow \mathrm{TiCl}_{4}(g)$ using the following enthalpies of reaction:

$$
\begin{array}{ll}
\mathrm{Ti}(s)+2 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{TiCl}_{4}(l) & \Delta H^{\mathrm{o}}=-804.2 \mathrm{~kJ} \\
\mathrm{TiCl}_{4}(g) \rightarrow 2 \mathrm{Cl}_{2}(g)+\mathrm{Ti}(s) & \Delta H^{\mathrm{o}}=763.2 \mathrm{~kJ}
\end{array}
$$

b. -783.7 kJ c. 1165 kJ
d. 41 kJ
39. Calculate the enthalpy of reaction for: $\mathrm{D}+\mathrm{F} \rightarrow \mathrm{G}+\mathrm{M}$ using the following equations and data:

$$
\begin{array}{ll}
\mathrm{G}+\mathrm{C} \rightarrow \mathrm{~A}+\mathrm{B} & \Delta H^{\circ}=+277 \mathrm{~kJ} \\
\mathrm{C}+\mathrm{F} \rightarrow \mathrm{~A} & \Delta H^{\mathrm{o}}=+303 \mathrm{~kJ} \\
\mathrm{D} \rightarrow \mathrm{~B}+\mathrm{M} & \Delta H^{\mathrm{o}}=-158 \mathrm{~kJ}
\end{array}
$$

a. $\quad-132 \mathrm{~kJ}$
b. -422 kJ
c. $\quad+422 \mathrm{~kJ}$
d. +132 kJ
40. Calculate the standard enthalpy of the reaction for the process $3 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{NO}_{2}(g)$ using the standard enthalpies of formation (in $\mathrm{kJ} / \mathrm{mol}$): $\mathrm{NO}=90 ; \mathrm{N}_{2} \mathrm{O}=82.1 ; \mathrm{NO}_{2}=34.0$
a. $\quad-153.9 \mathrm{~kJ}$
b. 206 kJ
c. -26.1 kJ
d. 386 kJ
41. The standard molar enthalpy of combustion is -1277.3 kJ for the combustion of ethanol.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(g)
$$

Calculate the standard molar enthalpy of formation for ethanol based on the following standard enthalpies of formation:

$$
\begin{aligned}
& \Delta H_{\mathrm{f}}^{\mathrm{o}} \mathrm{CO}_{2}=-393.5 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta H_{\mathrm{f}}^{\mathrm{o}} \mathrm{H}_{2} \mathrm{O}=-241.8 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

a. -642.7
b. -235.1
c. 235.1
d. 642.7 $\mathrm{kJ} / \mathrm{mol}$
$\mathrm{kJ} / \mathrm{mol}$
$\mathrm{kJ} / \mathrm{mol}$
$\mathrm{kJ} / \mathrm{mol}$
42. Calculate the amount of heat needed to change 25.0 g ice at $0^{\circ} \mathrm{C}$ to water at $0^{\circ} \mathrm{C}$.

The heat of fusion of $\mathrm{H}_{2} \mathrm{O}=333 \mathrm{~J} / \mathrm{g}$;
a. $\quad 56.5 \mathrm{~kJ}$
b. $\quad 8.33 \mathrm{~kJ}$
c. 7.06 kJ
d. 463 kJ

Thermodynamics

43. Which of the following represents an increase in entropy?
a. freezing of water
b. boiling of water
c. crystallization of salt from a supersaturated solution
d. the reaction $2 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}_{2}(g)$
e. the reaction $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
44. The enthalpy of vaporization of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is $35.3 \mathrm{~kJ} / \mathrm{mol}$ at the boiling point of $64.2^{\circ} \mathrm{C}$. Calculate the entropy change for methanol going from a liquid to vapor.
f. $600 . \mathrm{J} / \mathrm{K} \cdot \mathrm{mol}$
g. $551 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
h. $105 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
i. $-105 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
j. $\quad-551 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
45. Calculate the standard entropy change for the following reaction, $\mathrm{Cu}(s)+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CuO}(s)$ given that

$S^{\mathrm{o}}[\mathrm{Cu}(s)]=33.1 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
$S^{\mathrm{o}}\left[\mathrm{O}_{2}(g)\right]=205.14 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
$S^{\mathrm{o}}[\mathrm{CuO}(s)]=42.63 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$

a. $\quad 195.66 \mathrm{~J} / \mathrm{K}$
b. $\quad 93.09 \mathrm{~J} / \mathrm{K}$
c. $-45.28 \mathrm{~J} / \mathrm{K}$
d. $-93.09 \mathrm{~J} / \mathrm{K}$
e. $195.66 \mathrm{~J} / \mathrm{K}$
46. In which of the following reactions do you expect to have a decrease in entropy?
k. $\mathrm{Fe}(s) \rightarrow \mathrm{Fe}(l)$
n. $\mathrm{HF}(l) \rightarrow \mathrm{HF}(g)$

1. $\mathrm{Fe}(s)+\mathrm{S}(s) \rightarrow \mathrm{FeS}(s)$
m. $2 \mathrm{Fe}(s)+3 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(s)$
o. $2 \mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(g)$
2. The formation $1 / 2 A_{2}+2 B_{2}+C \rightarrow C A B_{4}$ has an enthalpy of formation of -104 kJ and a change in entropy of -60.8 J / K at $30^{\circ} \mathrm{C}$. What is ΔG° and spontaneity of the reaction?
p. -85.6 kJ , spontaneous
q. -18.3 kJ , not spontaneous
r. +18.3 kJ , spontaneous
s. +85.6 kJ , not spontaneous
t. $\quad-85.6 \mathrm{~kJ}$, not spontaneous
3. If ΔH° and ΔS are both negative or positive, then ΔG° has a \qquad sign.
u. positive
w. variable
x. large
4. At what temperature would a given reaction become spontaneous if $\Delta \mathrm{H}^{\circ}=+119 \mathrm{~J}$ and $\Delta S=+263 \mathrm{~J} / \mathrm{K}$?
z. 452 K
aa. 2210 K
bb. 382 K
cc. 2.21 K
dd. 363 K
5. The free energy change for a given reaction is -36.2 kJ . What is the equilibrium constant at 298 K ?
a. 0.985
b. 2.22×10^{6}
c. $\quad 1.01$
d. 8.32×10^{-7}
e. 3.25×10^{6}
6. Given the following information, calculate ΔG° for the reaction below at $25^{\circ} \mathrm{C}$:
$\mathrm{SnCl}_{4}(l)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{SnO}_{2}(s)+4 \mathrm{HCl}(g), \Delta H^{\circ}=133.0 \mathrm{~kJ}$ and $\Delta S^{\circ}=401.5 \mathrm{~J} / \mathrm{K}$
a. $\quad-252.6 \mathrm{~kJ}$
b. -13.4 kJ
c. $\quad 13.4 \mathrm{~kJ}$
d. $\quad 122.9 \mathrm{~kJ}$
e. 252.6 kJ
7. Given the following information, calculate ΔG° for the reaction below at $25^{\circ} \mathrm{C}: 2 \mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(g)$

Compound	$\underline{\Delta H^{0}}(\mathrm{~kJ} / \mathrm{mol})$	$\underline{S}^{0}(\mathrm{~J} / \mathrm{K} \cdot \mathrm{mol})$
$\mathrm{H}_{2} \mathrm{O}_{2}(l)$	-187.8	109.6
$\mathrm{H}_{2} \mathrm{O}(l)$	-285.8	69.9
$\mathrm{O}_{2}(g)$	-	205.1

a. -37700 kJ
b. -342.6 kJ
c. -233.5 kJ
d. -233.5 kJ
e. -157.9 kJ
52. For the process, at $25^{\circ} \mathrm{C}, \mathrm{I}_{2}(g) \rightarrow \mathrm{I}_{2}(s)$, what are the signs of $\Delta G, \Delta H$, and ΔS ?

	$\underline{\Delta \boldsymbol{G}}$	$\underline{\Delta \boldsymbol{H}}$	$\underline{\Delta S}$
a.	+	-	-
b.	-	-	-
c.	-	+	+
d.	-	-	+
e.	+	+	+

53. If a process is exothermic and not spontaneous, then what must be true?
a. $\Delta S>0$
b. $\Delta H>0$
c. $\Delta G=0$
d. $\Delta S<0$
e. $\Delta H=0$
54. For any reaction at equilibrium, which of the following is true?
a. $\Delta H<0$
b. $\Delta S=0$
c. $\Delta S<0$
d. $\Delta H=0$
e. $\Delta G=0$
55. All of the following have $\Delta G^{\mathrm{o}}{ }_{\mathrm{f}}=0$ EXCEPT
a. $\quad \mathrm{O}_{2}(g)$
b. $\quad \mathrm{Br}_{2}(g)$
c. $\mathrm{H}_{2}(g)$
d. $\mathrm{Ca}(s)$
e. $\operatorname{Hg}(l)$
56. Ammonium nitrate spontaneously dissolves in water at room temperature and the process causes the solution to become quite cold. Which of the following is TRUE about the dissolution of ammonium nitrate?
a. The process is exothermic.
b. Its solubility will be greater in warmer water.
c. ΔS° for the reaction is negative.
d. All solutions of ammonium nitrate are supersaturated.
e. All solutions of ammonium nitrate are cold.
57. Under which set of conditions is a chemical reaction most likely to be spontaneous?
$\underline{\Delta H} \quad \underline{\Delta S} \quad \underline{T}$ (temperature)
a. - - low
b. - - high
c. $+\quad+$ low
d. + - high
58. For which reaction do you expect $\Delta \mathrm{S}$ to be negative?
a. $2 \mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}(g)$
b. $\quad \mathrm{Br}_{2}(s) \rightarrow \mathrm{Br}_{2}(l)$
c. $\quad \mathrm{H}_{2} \mathrm{O}\left(l, 25^{\circ} \mathrm{C}\right) \rightarrow \mathrm{H}_{2} \mathrm{O}\left(l, 50^{\circ} \mathrm{C}\right)$
d. $\mathrm{Cl}_{2}(g)+2 \mathrm{HI}(g) \rightarrow \mathrm{I}_{2}(s)+2 \mathrm{HCl}(g)$
59. Which has the greatest absolute entropy?
a. one mol of $\mathrm{C}(s)$ at $25^{\circ} \mathrm{C}$
c. one mol of $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$
b. one mol of $\mathrm{CH}_{3} \mathrm{Cl}(l)$ at $25^{\circ} \mathrm{C}$
d. one mol of $\mathrm{C}_{6} \mathrm{H}_{6}(l)$ at $25^{\circ} \mathrm{C}$

60 . For which of these processes would $\Delta \mathrm{S}^{\circ}$ be expected to be the most positive?
a. $\quad \mathrm{O}_{2}(g)+2 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)$
b. $\quad \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(s)$
c. $\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$
d. $\mathrm{NH}_{4} \mathrm{NO}_{2}(s) \rightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$
61. For which of these processes is the value of $\Delta \mathrm{S}$ expected to be negative?
I. Sugar is dissolved in water
II. Steam is condensed
III. $\quad \mathrm{CaCO}_{3}$ is decomposed into CaO and CO_{2}.
a. I only
c. II only
b. I and III only
d. II and III only
62. Which set of conditions is most likely to result in a reaction that is spontaneous as written?
a.
b.
c.
d.

ΔH	ΔS	T
<0	<0	$500^{\circ} \mathrm{C}$
<0	<0	$0^{\circ} \mathrm{C}$
>0	<0	$0^{\circ} \mathrm{C}$
>0	<0	$500^{\circ} \mathrm{C}$

63. For which of these processes is the sign of the enthalpy change different from the others?
e. $\mathrm{Al}_{2} \mathrm{O}_{3}(s) \rightarrow 2 \mathrm{Al}(s)+3 / 2 \mathrm{O}_{2}(g)$
f. $\mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
g. $\quad \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Cl}(g)$
h. $\quad \mathrm{Cl}(g)+e^{-} \rightarrow \mathrm{Cl}^{-}(g)$
64. For the process $\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{O}(g), \Delta H^{0}=+498 \mathrm{~kJ}$. What would be predicted for the sign of ΔS_{rxn} and the conditions under which this reaction would be spontaneous?
a.

ΔS_{rxn}	Spontaneous
positive	at low temperatures only
positive	at high temperatures only
negative	at high temperatures only
negative	at low temperatures only

65. For the reaction $\mathrm{NH}_{4} \mathrm{Cl}(s) \rightarrow \mathrm{NH}_{3}(g)+\mathrm{HCl}(g), \Delta H^{\circ}=+176 \mathrm{~kJ}$ and $\Delta G^{\circ}=+91.2 \mathrm{~kJ}$ at 298 K . What is the value of ΔG at 1000 K ?
i. $\quad-109 \mathrm{~kJ}$
j. $\quad-64 \mathrm{~kJ}$
k. +64 kJ
66. +109 kJ
67. When ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}(s)$ is added to water at $25^{\circ} \mathrm{C}$, it dissolves spontaneously and the temperature of the solution decreases. This indicates that the factor causing the substance to dissolve is a change in
m . energy
n. enthalpy
o. entropy
p. temperature
