Vame	
------	--

Period Date / /

5 – Thermochemistry/Thermodynamics

WS#1: WORK/ENERGY/ENTHALPY

- 1. Which has the greater kinetic energy, an object with a mass of 2.0kg and a velocity of 1.0m/s or an object with a mass of 1.0kg and a velocity of 2.0m/s? (Ans: 1.0kg-m²/s² (J) vs. 2.0 kg-m²/s² (J)
- 2. 900.J of heat are added to a system and 200. joules of work are done on the system. What is the change in energy of the system? (Ans: +1100J)
- 3. Calculate the work for a system that absorbs 260kJ of heat and for which the change in energy is +157kJ. Is the work done on or by the system? Does the system expand or contract? (Ans: -103kJ)
- 4. Two liters of an ideal gas is expanded into a vacuum and the new volume is 4L. If 500J of heat flow out of the container, what is the change in internal energy of the system? (Ans: -500J)
- 5. One of the components of polluted air is NO. It is formed in the high temperature environment of internal combustion engines by the following reaction: $N_2(g) + O_2(g) \rightarrow 2NO(g)$ ($\Delta H = 180$ kJ). Why are high temperatures needed to convert N₂ and O₂ to NO?
- 6. Are the following processes exothermic or endothermic?
 - a. When solid KBr is dissolved in water, the solution gets colder.
 - b. Natural gas, CH₄, is burned in a furnace.
 - c. When concentrated H_2SO_4 is added to water, the solution gets very hot.
 - d. Water is boiled in a tea kettle.
- 7. The overall reaction in commercial heat packs can be represented as $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$ ($\Delta H = -1652kJ$)
 - a. How much heat is released when 4.00mol iron is reacted with excess O₂? (Ans: -1652kJ)
 - b. How much heat is released when 1.00mol of Fe₂O₃ is produced? (Ans: -826kJ)
 - c. How much heat is released when 1.00g of iron is reacted with excess O₂? (Ans: -7.40kJ)
 - d. How much heat is released when 10.0g Fe and 2.00g O₂ are reacted? (Ans: -34.4kJ)
- 8. How much heat is transferred when 147g of NO₂ reacts with 100.g H₂O according to the following equation:

$$3NO_2 + H_2O \rightarrow 2HNO_3 + NO$$
 $\Delta H = -138 \text{ kJ} \text{ (Ans: -147kJ)}$

WS#2: CALORIMETRY

Measuring heat (formerly measured in calories) is called **calorimetry**. Now we measure heat energy in Joules (J). The equation we use is:

 $q = m \ge C_p \ge \Delta T$ $q = heat energy, m = mass of water, C_p = the specific heat capacity, and$

 ΔT = the change in temperature (in °C or K)

- 1. Water has a specific heat capacity of $4.184 \text{ J/g} \cdot \text{°C}$. This means it takes 4.184 J to heat 1.00 gram of water 1.00 °C.
 - a. How much energy will it take to heat 10.0 grams of water 1°C? _____ (Ans: 41.84J)
 - b. How much energy is needed to heat $30.0 \text{g H}_2\text{O}$ from 10.0°C to 50.0°C ? (Ans: 5020.8J)
- 2. Let's try a standard calorimetry problem. A pot of water (2.5 liters of water) initially at 25.0°C is heated to boiling (100.°C).
 - a. How much energy (in J) is needed to heat the water? (The density of water is 1.00g/mL.). (Ans: 780,000J)
 - b. What would this amount of heat be in kJ? (Ans: 780kJ)
- 3. What amount of heat is *released* when 175g of water *cools* from 100.°C to room temperature, 20.0°C? (Ans: -59kJ)
- 4. We don't always have to warm up or cool down water. The specific heat capacity of copper metal is 0.39J/g.°C.
 - (easier/more difficult) to heat up copper than to heat up water. a. It is
 - b. How much energy would it take to heat up a 5.20g sample of copper from 20.0°C to 100.°C? (Ans: 160J)
- 5. If 300.J of heat energy were used to heat up a 5.00 gram sample of copper metal and a 5.00 gram sample of water both starting at 10.0°C, calculate the final temperature of each sample? (Ans: 163.8°C and 24.3°C)

Signs of ΔT and q: -q means heat is released. +q means heat is absorbed. ΔT is always final temperature – *initial* temperature $(T_f - T_i)$. If something is getting **hotter** $(10^\circ \rightarrow 30^\circ)$, the ΔT is $30 - 10 = +20^\circ$. (heat is absorbed)

If something is getting cooler $(75^\circ \rightarrow 25^\circ)$, the ΔT is $25 - 75 = -50^\circ$. (heat is released)

- 6. Suppose we mix 90.0 grams of hot water (90.0°C) with 10.0 grams of cold water (10.0°C). Let x = the final temperature. $C = 4.184 \text{ J/g} \cdot ^{\circ}\text{C}$
 - a. Set up an expression for the energy *released* (q) by the hot water ($\Delta q_{hot} = m_{hot} \times C_p \times \Delta T_{hot}$)
 - b. Set up an expression for the energy *absorbed* (q) by the cold water ($\Delta q_{cold} = m_{cold} \times C_p \times \Delta T_{cold}$)

- c. Knowing that the heat released = heat absorbed, combine the two expressions and solve for *x*. (Ans: 82°C)
- 7. We don't always have to use water. Let's use some aluminum shot. 175 grams of hot aluminum (100.°C) is dropped into an insulated cup that contains 40.0 mL of ice cold water (0.0°C). Follow the example above to determine the final temperature, *x*. (a) Set up an expression for the heat lost by the aluminum (*C*_p =0.900 J/g. °C). (b) Set up an expression for the heat gained by the cold water. (c) Put the two expressions together (don't forget to change one of the signs) and solve for *x*. (Ans: 48.5°C)
- 8. Somewhat Confusing Definitions:

There are several terms used in this chapter that sound very similar. Use the data provided to calculate each of them to clarify the differences. I've added some "Notes" that I hope will help. 74.8 J of heat is required to raise the temperature of 18.69 g of silver from 10.0°C to 27.0°C.

- a. What is the heat capacity of the silver sample? (J/°C). Note: This is a useful value only for this specific sample of silver. (Ans: 4.4 J/°C)
- b. What is the specific heat capacity of silver? $(J/g \cdot {}^{\circ}C)$ (Ans: 0.235 J/g·°C)
- Note: This is a useful value for *any* sample of silver that is heated or cooled.

This is equivalent to the 4.184 J g^{-1} \circ C⁻¹ that we use for water. This value is also called the specific heat.

- 9. 1.150 g of sucrose goes through combustion in a bomb calorimeter. If the temperature rose from 23.42°C to 27.64°C and the heat capacity of the calorimeter is 4.90 kJ/°C, then determine the heat of combustion of sucrose, $C_{12}H_{22}O_{11}$, in kJ per mole of $C_{12}H_{22}O_{11}$. (Ans: -6160kJ/mol)
- 10. The following data was collected in an experiment similar to the Specific Heat experiment performed in class. Fill in the missing values. (Assume the calorimeter has a calorimeter constant of 0 J/°C)

Data & Calculations	Glass Beads
mass of glass beads	4.88 g
mass of water	10.14 g
initial temperature of water	19.2 °C
initial temperature of beads	89.2 °C
final temperature of mixture	24.8 °C
temp change of water (°C)	
temp change of hot beads (°C)	
change in energy of water, q _{water} (J)	
change in energy of calorimeter (J)	0 J
change in energy of beads, q _{beads} (J)	
specific heat of beads (J·g ^{-1.} °C ⁻¹)	
accepted value of specific heat	.833
% error	

WS#3: HEAT OF FORMATION ($\Delta H_{\rm F}^{\rm O}$), HESS'S LAW, AND BOND ENTHALPY

1. Calculate the standard enthalpy of combustion for the following reaction: $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$. To solve this problem, we must know the following ΔH^0_f values: (Ans: -2801kJ/mol)

$C_6H_{12}O_6(s)$ -1275.0		$\mathrm{CO}_2(g)$	-393.5		
$O_2(g)$	zero	$H_2O(l)$	-285.8		

- 2. Complete combustion of 1.00 mol of acetone (C₃H₆O) liberates 1790 kJ: C₃H₆O(*l*) + 4O₂(*g*) \rightarrow 3CO₂(*g*) + 3H₂O(*l*) + 1790 kJ. Using this information along with the data below (values in kJ/mol), calculate the enthalpy of formation of acetone. ($\Delta H^{\circ}_{f, CO2}$: -393.5kJ/mol and $\Delta H^{\circ}_{f, H2O}$: -285.83kJ/mol) (Ans: -248kJ/mol)
- 3. Ammonia reacts with oxygen to form nitrogen dioxide and steam, as follows: $4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(g)$. Given the following standard enthalpies of formation (given in kJ/mol), calculate the enthalpy of the reaction. Note that water is given as a gas. Normally, water as a liquid is used in problems. Not in this one. (Ans: -1135kJ)

NH ₃ (g) -45.90 NO ₂ (g) +33.1 H ₂	-241.83
---	---------

- 4. The standard enthalpy change, ΔH° , for the thermal decomposition of silver nitrate according to the following equation is +78.67 kJ: AgNO₃(s) \rightarrow AgNO₂(s) + (1/2)O₂(g). The standard enthalpy of formation of AgNO₃(s) is -123.02 kJ/mol. Calculate the standard enthalpy of formation of $AgNO_2(s)$ (Ans: -44.35kJ)
- 5. Calculate the enthalpy for this reaction: $2C(s) + H_2(g) \rightarrow C_2H_2(g)$. (Ans: +226.7kJ)

$$2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(l)$$

 $C(s) + O_2(g) \rightarrow CO_2(g)$

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$

 $\Delta H^\circ = -2599 \text{ kJ}$ $\Delta H^\circ = -393.5 \text{ kJ}$ $\Delta H^\circ = -571.6 \text{ kJ}$

6. Given the following information:

$2\mathrm{NO}(g) + \mathrm{O}_2(g) \rightarrow 2\mathrm{NO}_2(g)$	$\Delta H^{\rm o} = -116 \text{ kJ}$
$2N_2(g) + 5O_2(g) + 2H_2O(l) \rightarrow 4HNO_3(aq)$	$\Delta H^{\rm o} = -256 \text{ kJ}$
$N_2(g) + O_2(g) \rightarrow 2NO(g)$	$\Delta H^{\rm o} = +183 \text{ kJ}$

Calculate the enthalpy change for the reaction below: $3NO_2(g) + H_2O(l) \rightarrow 2HNO_3(aq) + NO(g)$ (Ans: -137kJ) 7. Calculate ΔH for this reaction: $ClF(g) + F_2(g) \rightarrow ClF_3(g)$ given: (Ans: -108.7kJ)

$2\mathrm{CIF}(g) + \mathrm{O}_2(g) \to \mathrm{Cl}_2\mathrm{O}(g) + \mathrm{F}_2\mathrm{O}(g)$	$\Delta H^{\rm o} = 167.4 \text{ kJ}$
$2\mathrm{CIF}_3(g) + 2\mathrm{O}_2(g) \rightarrow \mathrm{Cl}_2\mathrm{O}(g) + 3\mathrm{F}_2\mathrm{O}(g)$	$\Delta H^{\rm o} = 341.4 \text{ kJ}$
$2F_2(g) + O_2(g) \rightarrow 2F_2O(g)$	$\Delta H^{\rm o} = -43.4 \text{ kJ}$

- 8. Using bond enthalpies, calculate the reaction enthalpy (ΔH) for: $CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$. Bond enthalpies (in kJ/mol): C-H (413); Cl-Cl (239); C-Cl (339); H-Cl (427) (Ans: -114kJ)
- 9. What is the enthalpy of reaction for the following equation: $2 \text{ CH}_3\text{OH}(l) + 3 \text{ O}_2(g) \rightarrow 2 \text{ CO}_2(g) + 4 \text{ H}_2\text{O}(g)$. Given the following bond enthalpies (in kJ/mol): C-H (414); C-O (360); C=O (799); O=O (498); O-H (464) (Ans: -1282kJ)
- 10. Calculate the bond energy of the Cl-F bond using the following data: $Cl_2(g) + F_2(g) \rightarrow 2ClF(g), \Delta H = -108 \text{ kJ}.$ Bond enthalpies (in kJ/mol): Cl-Cl (239); F-F (159) (Ans: 253kJ for the Cl-F bond)
- 11. The reaction of H₂ with F₂ produces HF with $\Delta H = -269$ kJ/mol of HF. If the H-H and H-F bond energies are 432 and 565 kJ/mol, respectively, what is the F-F bond energy? $H_2(g) + F_2(g) \rightarrow 2HF(g)$ (Ans: 160kJ for the F-F bond)

WS#4: Entropy

- 1. Which of the following processes are spontaneous?
 - a. Salt dissolves in water.
 - b. A clear solution becomes a uniform color after a few drops of dye are added.
- 2. Choose the compound with the greatest positional entropy in each case.
 - a. $1 \mod H_2$ (at STP) or $1 \mod H_2$ (at 100° C, 0.5atm)
- 3. Which of the following involves an increase in entropy of the system?
 - a. melting of a solid c. freezing d. mixing b. sublimation
- 4. Predict the sign of ΔS_{surr} for the following processes.

a.
$$H_2O(l) \rightarrow H_2O(g)$$

b.
$$CO_2(g) \rightarrow CO_2(s)$$

- c. $2H_2S(g) + SO_2(g) \rightarrow 3S_{\text{rhombic}}(s) + 2H_2O(g)$
- 5. Calculate ΔS_{surr} for the following reactions at 25°C and 1atm.
 - a. $C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g) \Delta H^{\circ} = -2221 \text{kJ} \text{ (Ans: } +7453 \text{J/K)}$
 - b. $2NO_2(g) \rightarrow 2NO(g) + O_2(g) \Delta H^\circ = 112kJ$ (Ans: -376J/K)
- 6. Ethanethiol (C₂H₅SH; also called ethyl mercaptan) is commonly added to natural gas to provide he "rotten egg" smell of a gas leak. The boiling point of ethanethiol is 35°C and its heat of vaporization is 27.5kJ/mol. What is the entropy of vaporization for this substance? (An:89.3J/K-mol)
- 7. For ammonia, NH₃, the enthalpy of fusion is 5.65kJ/mol and the entropy of fusion is 28.9J/K-mol.
 - a. Will NH₃(s) spontaneously melt at 200.K?
 - b. What is the approximate melting point of ammonia? (Ans: a. yes, $\Delta G < 0$, b. 196K)
- 8. Determine the standard entropy change for the decomposition of one mole of solid calcium carbonate, forming solid calcium oxide and carbon dioxide gas. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g) (\Delta S^{\circ} \text{ for } CaO(s) \text{ is } 39.8 \text{ J/mol-K}, \Delta S^{\circ} \text{ for}$ $CO_2(g)$ is 213.7 J/mol-K, and ΔS° for $CaCO_3(s)$ is 92.9 J/mol-K) (Ans: 160.6J/mol-K)

- c. Iron rusts
- d. You clean your bedroom.
- b. $1 \mod N_2$ (at STP) or $1 \mod N_2$ (at 100K, 2.0atm)
- c. $1 \mod H_2O(s)$ (at 0°C) or $1 \mod H_2O(l)$ (at 20°C)

e. separation

f. boiling

d. $2SO_3(g) \rightarrow 2SO_2(g) + O_2(g)$

e. $Fe_2O_3(s) + 3H_2(g) \rightarrow 2Fe(s) + 3H_2O(g)$

WS#5: Free Energy

- 1. Define Gibb's Free energy.
- 2. Given the values for ΔH and ΔS , which of the following changes will be spontaneous at constant T and P?
 - a. $\Delta H = +25$ kJ, $\Delta S = +5.0$ J/K, T = 300.K (Ans: 23.5kJ/mol) b. $\Delta H = +25$ kJ, $\Delta S = +100$ J/K, T = 300 K (Ans: -11.5kJ/mol) d. $\Delta H = -10$ kJ, $\Delta S = +5.0$ J/K, T = 298K (Ans: -11.5kJ/mol)
 - b. $\Delta H = +25$ kJ, $\Delta S = +100$.J/K, T = 300.K (Ans: -5kJ/mol)

(Ans: -11.5kJ/mol) d. $\Delta H = -10.$ kJ, $\Delta S = -40.$ J/K, T = 200.K (Ans: -2.0kJ/mol)

c. $\Delta G = 0$

3. Describe how the sign of ΔG determines the spontaneity of a reaction: a. $\Delta G > 0$ b. $\Delta G < 0$

4. Given the following thermodynamics values, determine how temperature affects the spontaneity of the reaction. Is the reaction enthalpy, entropy driven, both, or neither (compare ΔH vs (-T ΔS). a. $\Delta H = +327$ kJ/mol, $\Delta S = +127$ J/K-mol c. $\Delta H = +194$ kJ/mol, $\Delta S = -4.0$ J/K-mol

b. $\Delta H = -187 \text{ kJ/mol}, \Delta S = -298 \text{ J/K-mol}$

- c. $\Delta H = +194$ kJ/mol, $\Delta S = -4.0$ J/K-mol d. $\Delta H = -397$ kJ/mol, $\Delta S = +653$ J/K-mol
- 5. For each reaction below, determine the temperature at which the reaction will be spontaneous.
 - a. $\Delta H = +245 \text{ kJ/mol}, \Delta S = +48 \text{ J/K-mol}$ (Ans: 5104K)
 - b. $\Delta H = +187 \text{ kJ/mol}, \Delta S = +365 \text{ J/K-mol}$ (Ans: 512K)

(Ans: 12,000K) d. $\Delta H = -547$ kJ/mol, $\Delta S = -97$ J/K-mol (Ans: 5639K)

c. $\Delta H = -456$ kJ/mol, $\Delta S = -38$ J/K-mol

- 6. $\Delta H^{\circ} = 131.4 \text{ kJ and } \Delta G^{\circ} = 91.2 \text{ kJ for the reaction } C(s) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$. Calculate ΔS° in J/K for this reaction at 25°C. (Ans: 135 J/K)
- 7. Using the values of ΔG°_{f} , calculate the ΔG°_{rxn} of each of the reactions below. Is each reaction spontaneous at standard conditions? $\Delta G^{\circ}_{f}(N_{2}O_{4}) = 100 \text{ kJ/mol}, \Delta G^{\circ}_{f}(NO_{2}) = 51 \text{ kJ/mol}, \Delta G^{\circ}_{f}(NH_{4}Cl) = -203 \text{ kJ/mol}, \Delta G^{\circ}_{f}(NH_{3}) = -16 \text{ kJ/mol}, \Delta G^{\circ}_{f}(HCl) = -95 \text{ kJ/mol}, \Delta G^{\circ}_{f}(Fe_{2}O_{3}) = -742 \text{ kJ/mol}, \Delta G^{\circ}_{f}(H_{2}O) = -229 \text{ kJ/mol}$ a. $N_{2}O_{4}(g) \rightarrow 2NO_{2}(g)$ (Ans: 2 kJ) b. $N_{2}U(g) = 2NU_{2}(g) + Fe_{2}O_{3}(g) \rightarrow 2Fe(g) + 3H_{2}O(g)$ (Ans: 55kJ) b. $N_{2}U(g) = 2NU_{2}(g) + NU_{2}U(g) + NU_{2}U(g) + NU_{2}U(g) + NU_{2}U(g)$ (Ans: 55kJ)
- b. $NH_4Cl(l) \rightarrow NH_3(g) + HCl(g)$ (Ans: 92 kJ) d. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ (Ans: -32 kJ) 8. Calculate ΔG for the reaction $NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$ for these conditions: $T = 298K, P_{NO} = 1.00x10^{-6}$ atm, $P_{O3} = 2.00x10^{-6}$ atm, $P_{NO2} = 1.00x10^{-7}$ atm, and $P_{O2} = 1.00x10^{-3}$ atm $\Delta G^o_f(NO) = 87$ kJ/mol, $\Delta G^o_f(O_3) = 163$ kJ/mol, and $\Delta G^o_f(NO_2) = 52$ kJ/mol (Ans: -188kJ)
- 9. Coupling of the two reactions below affords the overall reaction: $Fe_3O_4(s) + 2C(s) \rightarrow 3Fe(s) + 2CO_2(g)$. What is the value of ΔG° for this reaction? (Ans: +225.4 kJ/mol)

 $\begin{aligned} & \operatorname{Fe_3O_4(s)} \to \operatorname{3Fe}(s) + \operatorname{2O_2(g)} & \Delta G^\circ = 1014.2 \text{ kJ} \\ & \operatorname{O_2(g)} + \operatorname{C(s)} \to \operatorname{CO_2(g)} & \Delta G^\circ = -394.4 \text{ kJ} \end{aligned}$

- 10. Calculate the ΔG° for a reaction for which $K_{\rm c} = 5.0 \times 10^8$ at 25°C. (Ans:-50 kJ)
- 11. Given that ΔG_f for IBr is 1.3 kJ/mol, calculate K_c for the reaction at 25°C: I₂ + Br₂ \leftrightarrow 2IBr (Ans: 0.35)
- 12. A particular reaction has an equilibrium constant of 0.48 at 25°C. What is the value of ΔG° (in kJ)? (Ans: 1.8)

(Move to Electrochemistry)

- 13. What is *n*?
- 14. What is *F*?
- 15. Write the equation that relates ΔG° to E° ?
- 16. For each of the following equations, what must n be?
 - e. $Cu^2 + Mg \rightarrow Mg^{2+} + Cu$
 - f. $2Ag^{1+} + Sn \rightarrow 2Ag + Sn^{2+}$
 - g. $2Al + 3Pb^{2+} \rightarrow 3Pb + 2Al^{3+}$
- 17. What is the ΔG° of the following batteries?
 - h. $Cu^2 + Mg \rightarrow Mg^{2+} + Cu$ (Ans: -523kJ)
 - i. $2Ag^{1+} + Sn \rightarrow 2Ag + Sn^{2+}$ (Ans: -181kJ)
 - j. $2Al + 3Pb^{2+} \rightarrow 3Pb + 2Al^{3+}$ (Ans: -886kJ)
- 18. What sign must each of the following be for a battery?
 - k. *E*°
 - 1. ΔG°

WS#6: MC Review Questions Thermochemistry

Use the following information to answer questions 1 and 2.

Aluminum reacts with hydrochloric acid according to the following equation:

 $2\text{Al}(s) + 6\text{HCl}(aq) \rightarrow 2\text{AlCl}_3(aq) + 3\text{H}_2(g)$

- 1. If a sample of 27.0g of aluminum metal is added to 333mL of 3.0*M* hydrochloric acid, the volume of hydrogen gas produced at standard temperature and pressure is
- a.2.80Lb.5.60Lc.11.2Ld.22.4L2.What is the approximate density of the hydrogen gas produced at STP?
- a. 0.1g/L b. 0.2g/L c. 0.3g/L d. 0.4g/L3. Given the following data.
 - Calculate the ΔH°_{rxn} for the following reaction.

		Substance	$H^{\mathrm{o}}_{f}(\mathbf{k})$	J/mol)			
		$\mathrm{CO}_2(g)$	-39	3.5			
		$H_2O(g)$	-28	5.8			
		$C_4H_{10}(g)$	-12	4.7			
	$2C_4H_{10}($	$(g) + 13O_2(g)$	$\rightarrow 8CO_2(g)$	$+ 10H_2C$	$\mathbf{D}(g)$		
a6255.4kJ	b.	-5756.6 kJ		c40	0.6 kJ	d.	539.4 kJ
			5				
			m 5				
	~						
acidan the reaction showing			a . č	Civen	the fellowing informe	tion	aalaylata
isider the reaction shown.	9.9	$+ \longrightarrow$	+	. Ulveli	the following informa	uon,	calculate

4. Consider the reaction shown: $\checkmark + \diamondsuit \rightarrow \checkmark + \checkmark$. Given the following information, calculate ΔH^{o}_{rxn} for the combustion reaction represented above, where each molecule represents one mole of that substance. Assume that all states are those that are listed in the table

Substance	$\Delta H^{o}_{f}(kJ/mol)$
$CO_2(g)$	-393.5
$H_2O(g)$	-285.8
$CH_3OH(g)$	-201.0

a. -2332.2kJ b. -1528.2kJ c. -478.3kJ d. 45.8kJ

5. Which of the following graphs describes a pathway of reaction that is exothermic with a high activation energy?

6. One cup of ice has a mass of approximately 250g. The ice is at 0.0°C. How much heat is required to melt the ice and then warm the resulting water 25.0° C? A table of useful information is provided. Heat of fusion of H₂O(s) = 332kI/kg

		Heat of fusion of $H_2O(s)$ Specific heat of $H_2O(l)$	332kJ/kg 4.18J/°C-g	
	a. 25kJ	b. 58kJ	c. 83kJ	d. 110kJ
7.	A 20.g sample of metal at	100°-C is placed into 30.g of l	kerosene at 35°C. The final tempera	ture of both the
	kerosene and the metal is e	50°C. If the specific heat of ke	rosene is 2.0J/°C-g, what is the spec	cific heat of the metal?
	a. 1.0 J/°C-g	b. 1.5 J/°C-g	c. 2.0 J/°C-g	d. 2.5 J/°C-g

- 8. Calculate the enthalpy change for the following reaction given the information below. $Al_2(CO_3)_3(s) \rightarrow Al_2O_3(s) +$ $3CO_2(g)$.
 - $C(graphite) + O_2(g) \rightarrow CO_2(g)$ $\Delta H = W kJ$ $4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$ $\Delta H = X kJ$ $2Al(s) + 9/2O_2(g) + 3C(graphite) \rightarrow Al_2(CO_3)_3(s)$ $\Delta H = Y kJ$ a. W + X + Yc. $3W + \frac{1}{2}X + Y$ d. $3W + \frac{1}{2}X - Y$
 - b. 3W + X Y

9. In which of the following isothermal expansions of an ideal gas is the work done by the system the largest? Assume the temperature is the same for all choices.

- a. from 1 to 5L against an opposing pressure of $\frac{1}{2}$ atm.
- b. from 1 to 5L against an opposing pressure of 1 atm.
- c. from 1 to 5L against an opposing pressure of 3 atm.
- d. from 1 to 10L against an opposing pressure of 2 atm.
- 10. Consider four 100.0g samples of water, each in a separate beaker at 25°C. Into each beaker your drop 10.0g of a different metal that has been heated to 95°C. Assume no heat loss to the surroundings, which water sample will have the lowest final temperature?
 - a. the water to which you have added aluminum (s = 0.89J/°C-g)
 - b. the water to which you have added iron ($s = 0.45 \text{J/}^{\circ}\text{C-g}$)
 - c. the water to which you have added copper (s = 0.20J/°C-g)
 - d. the water to which you have added lead (s = 0.14 J/°C-g) q = 10 x s x T
- 11. A student performs a neutralization reaction involving an acid and a base in an open polystyrene coffee-cup calorimeter. How would the calculated value of ΔH differ from the actual value if there was significant heat loss to the surroundings?
 - a. ΔH_{calc} would be negative, but more negative than actual value.
 - b. ΔH_{calc} would be negative, but less negative than actual value.
 - c. ΔH_{calc} would be positive, but more positive than actual value.
 - d. ΔH_{calc} would be positive, but less positive than the actual value.
- 12. Which of the following is endothermic?
- a. Water freezes to form ice. c. Ice cream melts. b. Steam condenses on a bathroom mirror. d. Coffee cools as it sits. 13. At 25°C, the following heats of reaction are known: $2C_2H_2(g) + 5O_2 \rightarrow 4CO_2(g) + 2H_2O(l)$ $\Delta H = -2600.0 \text{kJ}$ $C_{(graphite)} + O_2(g) \rightarrow CO_2(g)$ $\Delta H = -394$ kJ $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ $\Delta H = -574 \text{kJ}$ At the same temperature, calculate the ΔH for the reaction $2C_{(graphite)} + H_2(g) \rightarrow C_2H_2(g)$ a. -2422kJ b. -225kJ d. 2422kJ c. 225kJ 14. Using Hess's law and the equation below find ΔH° at 25°C for the oxidation of C₂H₅OH(*l*). $C_2H_5OH(l) + 3O_2(g) \rightarrow 3H_2O(l) + 2CO_2(g).$ $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(l)$ $\Delta H^{\circ} = W kJ$ $2C(graphite) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(l) \quad \Delta H^\circ = X \text{ kJ}$ $C_2H_4(g) + H_2O(l) \rightarrow C_2H_5OH(l)$ $\Delta H^{\rm o} = Y \, \mathrm{kJ}$ a. W – Y c. X + 2W + Yb. X - 2Yd. 2X - W + Y15. A popular demonstration is to drop a piece of sodium metal into water. The products are sodium hydroxide and
 - hydrogen gas. Determine ΔH_{rxn} for this reaction for 1.00mol of hydrogen gas being produced, given
 - $\Delta H^{o}_{f} [H_{2}O(l)] = -286 \text{kJ/mol}$ and ΔH^{o}_{f} [NaOH(*l*)] = -470kJ/mol b. -184kJ a. -368kJ c. 184kJ d. 368kJ

16. Consider the freezing of liquid water at -10°C and 1 atm. For this process, what are the signs for ΔH , ΔS , and ΔG ? b. -. +. 0 a. +. -. 0 c. +. +. d. -. -. -

- 17. A 100mL sample of water is placed in a coffee-cup calorimeter. Solid NaCl is then dissolved in the water. The temperature of the water decreases from 20.5°C to 19.7°C and is then allowed to return to room temperature (20.5°C). Determine the signs for ΔH and ΔS for the process of dissolving NaCl and ΔG for the entire process at constant temperature.
 - b. -, +, 0 a. +, -, 0 c. +, +, d. -, -, -

- 18. Which reaction would have the most positive ΔS ?
 - a. $CO(g) + 2H_2(g) \rightarrow CH_3OH(l)$
 - b. $2CH_3OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(g)$
 - c. $HCl(g) + NH_3(g) \rightarrow NH_4Cl(s)$
 - d. $Ba(OH)_2 \bullet 8H_2O(s) + 2NH_3NO_3(s) \rightarrow Ba(NO_3)_2(s) + 2NH_3(g) + 10H_2O(l)$

19. Solutions A and B are both clear and colorless. When Solution A is mixed with Solution B, the temperature of the mixture increases and a yellow precipitate is observed. What can be concluded form these observations?

- a. The reaction is thermodynamically favored (spontaneous) at all temperatures.
- b. The reaction is thermodynamically favored (spontaneous) only at high temperatures.
- c. The reaction is thermodynamically favored (spontaneous) only at low temperatures.
- d. The reaction is thermodynamically not favored (spontaneous) at any temperature.

Questions 20-23 refer to the following information:

20.

21.

22.

23.

24.

The removal of copper from metallic ores has been a challenge since ancient times. Strong heating of copper (II) carbonate results in the formation of copper (II) oxide.

Although the decomposition of copper (II) oxide into copper metal and oxygen gas is not thermodynamically favorable under standard conditions, it may be made favorable by adding carbon to the mixture

The resulting reaction is: $2CuO(s) + C(s) \rightarrow 2Cu(s) + CO_2(g)$

			.07	10011/ 1	
	$\operatorname{CuO}(s) \to \operatorname{Cu}(s)$	$) + \frac{1}{2}O_2(g)$	$\Delta G^0 =$	128kJ/mol	
	$C(s) + O_2(g) \rightarrow$	$CO_2(g)$	$\Delta G^{ m o}$ =	-394kJ/mol	
Calcula	ate ΔG° for the overall rea	ction:			
a.	-138kJ/mol	b266 kJ/mol	c. 5	22 kJ/mol	d. 650 kJ/mol
Predict	and justify the sign of ΔS	So for the reaction $CuO(s)$ –	$\rightarrow Cu(s) + \frac{1}{2}$	$O_2(g).$	
a.	ΔS is positive because Δ	<i>G</i> is positive.			
b.	ΔS is negative because ΔS	ΔG is positive.			
с.	ΔS is positive because the	e products have more mole	es of gas than	n the reactant.	
d.	ΔS is negative because the	he products have more mol	es of gas that	n the reactant.	
Why is	the overall process therm	iodynamically favorable?	-		
a.	Carbon serves as a cataly	yst to lower the activation of	energy of the	reaction.	
b.	The process involves co	upling a very thermodynan	nically favora	able reaction with o	one that is not
	thermodynamically favo	red.			
с.	When two reactions are	coupled, free energy is alw	ays released.		
d.	The addition of carbon s	peeds up the reaction becar	use powdered	d carbon has a large	e surface area.
Which	statement is correct about	the value of K for the read	ction 2CuO(s	$) + C(s) \rightarrow 2Cu(s)$	$+ CO_2(g)$ at standard
conditi	ons?				_
a.	<i>K</i> will be less than 1.		с.	K will be between	n 0 and 1.
b.	K will be 0.		d.	<i>K</i> will be greater	than 1.
Under	normal conditions, an iror	n nail rusts so slowly that th	ne reaction is	not easily observed	d. What must be true?
a.	The reaction occurs, but	very slowly.		-	
b.	The product of the reaction	on is an invisible gas.			
с.	The reaction does not oc	cur without a catalyst.			

- d. The reaction is not thermodynamically favorable.
- 25. Calculate the ΔG° for the following equation: $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$.

$$\Delta G^{\circ}_{f}$$
 [SO₂] = -300 kJ/mol ΔG°_{f} [SO₃] = -371 kJ/mol

- a. -71kJ/mol b. -142 kJ/mol c. 71 kJ/mol d. 671 kJ/mol 26. How many joules are equivalent to 37.7 cal?
 - a. 9.01J b. 4.184J c. 1.51J d. 158J

27. The quantity of heat that is needed to raise the temperature of a sample of a substance 1.00 degree is called its

- a. heat capacity c. enthalpy
- b. specific heat d. kinetic energy
- 28. Equal masses of two substances, A & B, each absorb 25 Joules of energy. If the temperature of A increases by 4 degrees and the temperature of B increases by 8 degrees, one can say that
 - a. the specific heat of A is double that of B.b. the specific heat of B is double that of A.
- c. the specific heat of B is negative.d. the specific heat of B is triple that of A.
- 29. If 25 J are required to change the temperature of 5.0 g of substance A by 2.0°C, what is the specific heat of substance A?

	a. 250 J	/g°C	b.	63 J/g°C		c. 10	0. J/g°C	d.	2.5	J/g°C
30.	How much en	nergy is req	uired to chang	e the tempera	ature of 2.0	0 g alumi	num from 20.	0°C to 25.0°C?	' Th	e
	specific heat	of aluminu	n is 0.902 J/g ^o	°C.		C				
	a. 2.3 J		b.	9.0 J		с.	0.36 J		d.	0.090 J
31.	Consider the	thermal end	ergy transfer d	uring a chemi	ical process	s. When h	neat is transfer	rred to the system	em, t	the
	process is sai	d to be	and the s	ign of ΔH is	·					
	a. exoth	ermic, posi	tive			с.	exothermic,	negative		
	b. endo	thermic, ne	gative			d.	endothermic	, positive		
32.	What is the Δ	E for a syst	tem which has	the following	g two steps	:				
	Step 1: The s	ystem abso	rbs 60J of heat	while 40J of	work are p	performed	on it.			
	Step 2: The s	ystem relea	ses 30J of heat	t while doing	70J of wor	·k.				
~~	a. 100 J		b.	90 J		с.	30 J		d.	zero
33.	When two so	lutions read	t the container	"feels hot."	Thus,					
	a. the re	eaction is ei	idothermic.							
	b. the re	eaction is ex	kothermic.	1						
	c. the end	nergy of the	e universe is in	creased.		المحمدما				
24	a. the entropy	for the stor	the system a	of formation	andings is (iecreased.				
54.		$a + \Omega(a)$	$N_{\rm e}O_{\rm e}(a)$	or formation	$01 N_2 O_3 I_5$	0	NO(a) + NC	$\mathbf{N}_{\mathbf{a}}$ $\mathbf{N}_{\mathbf{a}}$.)	
	a. $N_2O($	$(a) \rightarrow N_{2}(b)$	$\rightarrow 1N_2O_3(g)$			c. d	$N_{0}(g) + N_{0}(g)$	$D_2(g) \rightarrow N_2O_3(g)$	ן) ה	
35	Eor the gener	$(g) \rightarrow N_2O$	$3(g) + O_2(g)$	AR AHis	500kI W	u. A can con	$N_2(g) + 72C$	$\mathcal{O}_2(g) \rightarrow \mathrm{IN}_2\mathrm{O}_3(g)$;)	
55.	a the re	al leachon,	$2 \mathbf{A} + \mathbf{D}_2 \rightarrow 2$	AD, $\Delta \Pi$ is +	JU.U KJ. W	e can com				
	b the si	urroundings	absorb energy	J						
	c the st	andard entl	alpy of forma	,. tion of AB is	-50.0 kJ					
	d. the m	olecule AF	contains less	energy than A	A or B_2 .					
36.	Calculate the	enthalpy of	f combustion of	of C ₃ H ₆ : C ₃ H ₆	$(g) + \frac{9}{2}O_2$	$(g) \rightarrow 3C$	$O_{2}(g) + 3H_{2}O_{2}(g)$	O(l) using the fo	ollow	ving data:
			$3C(s) + 3H_2(g)$	$\rightarrow C_{3}H_{6}(g)$	$\Delta H^{0} =$	53.3 kJ	2(0) 2 2	6		0
			$C(s) + O_2(g) -$	$\rightarrow CO_2(g)$	$\Lambda H^{\rm o} =$	-394 kJ				
			$H_2(g) + \frac{1}{2}Q_2(g)$	$(p) \rightarrow H_2O(l)$	$\Delta H^{\rm o} =$	-286 kJ				
	a1517	7 kJ	b.	1304 kJ		c6	526 kJ	d.	-20	93 kJ
37.	Which one of	the follow	ing would hav	e an enthalpy	of formati	on value ($(\Delta H_{\rm f})$ of zero?			
	a. H ₂ O(<i>g</i>)	b.	O(g)		с.	$H_2O(l)$		d.	$O_2(g)$
38.	Calculate the	heat of vap	orization of tit	anium (IV) c	hloride: Ti	$iCl_4(l) \rightarrow$	$TiCl_4(g)$ usin	g the following	enth	nalpies of
	reaction:	_								_
			Ti(s) -	$+ 2\operatorname{Cl}_2(g) \to \mathbb{C}$	$\Gamma i Cl_4(l)$	$\Delta H^{\circ} = -8$	304.2 kJ			
			TiCl ₄ ($g) \rightarrow 2\mathrm{Cl}_2(g)$	+ Ti(s)	$\Delta H^{\rm o} = 7$	'63.2 kJ			
	a1567	7 kJ	b.	-783.7 kJ		c. 1	165 kJ	d.	41	kJ
39.	Calculate the	enthalpy of	f reaction for:	$D + F \rightarrow G +$	M using the	ne followi	ng equations	and data:		
			G + C	$\rightarrow A + B$	$\Delta H^{ m o}$ =	= +277 kJ				
			C + F	$\rightarrow A$	$\Delta H^{ m o}$ =	= +303 kJ				
			$D \rightarrow I$	3 + M	$\Delta H^{ m o}$ =	= -158 kJ				
	a132	kJ	b.	-422 kJ		с.	+422 kJ		d.	+132 kJ
40.	Calculate the	standard en	thalpy of the	reaction for th	he process ?	3NO(g) -	\rightarrow N ₂ O(g) + N	$O_2(g)$ using the	star	ndard
	enthalpies of	formation (in kJ/mol): NO	$O = 90; N_2O =$	= 82.1; NO	$_2 = 34.0$				
	a153.	9 kJ	b.	206 kJ		c2	26.1 kJ	d.	386	5 kJ
41.	The standard	molar enth	alpy of combu	stion is -1277	7.3 kJ for th	e combus	stion of ethan	ol.		
	~		C_2H_5	$OH(l) + 3O_2(l)$	$g) \rightarrow 2CO_2$	$g(g) + 3H_2$	O(g)			
	Calculate the	standard m	olar enthalpy	of formation	for ethanol	based on	the following	standard entha	alpies	s of
	formation:		$\Delta H^{\rm o}{}_{\rm f}{\rm CO}_2=-3$	93.5 kJ/mol						
		_	$\Delta H^{\rm o}{}_{\rm f}{\rm H}_2{\rm O}=-2$	41.8 kJ/mol					_	
	a642.	7	b.	-235.1		с.	235.1		d.	642.7
40	kJ/m	ol -		kJ/mol		1 /	kJ/mol			kJ/mol
42.	Calculate the	amount of	heat needed to	change 25.0	g ice at 0°C	to water	at 0℃.			
	The heat of fu	usion of H_2	U = 333 J/g;	0.221.7			7.041		1	4 (2) 1
	a. 56.5k	IJ	b.	8.33kJ		с.	/.06kJ		d.	463kJ

Thermodynamics

43. Which of the following represents an increase in entropy?

- a. freezing of water
- b. boiling of water
- c. crystallization of salt from a supersaturated solution
- d. the reaction $2NO(g) \rightarrow N_2O_2(g)$
- e. the reaction $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$
- 44. The enthalpy of vaporization of methanol (CH₃OH) is 35.3 kJ/mol at the boiling point of 64.2° C. Calculate the entropy change for methanol going from a liquid to vapor.
 - f. 600. J/K·mol h. $105 \text{ J/K} \cdot \text{mol}$ i. $-551 \text{ J/K} \cdot \text{mol}$
 - g. $551 \text{ J/K} \cdot \text{mol}$ i. $-105 \text{ J/K} \cdot \text{mol}$
- 45. Calculate the standard entropy change for the following reaction, $Cu(s) + \frac{1}{2}O_2(g) \rightarrow CuO(s)$ given that

$S^{\circ}[Cu(s)] = 33.1 \text{J/K} \cdot \text{mol}$	
$S^{\circ}[O_2(g)] = 205.14 \text{ J/K} \cdot \text{mol}$	
S° [CuO(s)] = 42.63 J/K·mol	

a. 195.66 J/K c. -45.28 J/K e. 195.66 J/K b. 93.09 J/K d. -93.09 J/K 46. In which of the following reactions do you expect to have a decrease in entropy? n. $HF(l) \rightarrow HF(g)$

- k. $Fe(s) \rightarrow Fe(l)$
- o. $2 \operatorname{H}_2\operatorname{O}_2(l) \rightarrow 2 \operatorname{H}_2\operatorname{O}(l) + \operatorname{O}_2(g)$
- 1. $Fe(s) + S(s) \rightarrow FeS(s)$ m. 2 Fe(s) + 3/2 O₂(g) \rightarrow Fe₂O₃(s)

47. The formation $\frac{1}{2}A_2 + 2B_2 + C \rightarrow CAB_4$ has an enthalpy of formation of -104kJ and a change in entropy of -60.8 J/K at 30°C. What is ΔG° and spontaneity of the reaction? n -85.6kI spontaneous 195 61/L not anontanoous

р.	оэ.ок <u>э,</u> sp	ontaneous			5.	+65.0KJ, not spe	maneous	
q.	-18.3kJ, no	ot spontaneous			t.	-85.6kJ, not spo	ntaneous	
r.	+18.3kJ, sp	oontaneous						
48. If ΔH	° and ΔS are b	ooth negative or posit	ive, then Δ	G° has a		_ sign.		
u.	positive		w.	variable			y. no	
v.	negative		х.	large				
10 1 1					10 1 7 70	440 7 1		

49. At what temperature would a given reaction become spontaneous if $\Delta H^{0} = +119$ J and $\Delta S = +263 \text{ J/K}?$

z. 452K aa. 2210K bb. 382K cc. 2.21K dd. 363K 50. The free energy change for a given reaction is -36.2 kJ. What is the equilibrium constant at 298K? a. 0.985 c. 1.01 e. 3.25×10^6

d. 8.32x10⁻⁷ b. 2.22×10^6

51. Given the following information, calculate ΔG° for the reaction below at 25°C:

 $\text{SnCl}_4(l) + 2 \text{ H}_2\text{O}(l) \rightarrow \text{SnO}_2(s) + 4 \text{ HCl}(g), \Delta H^\circ = 133.0 \text{ kJ} \text{ and } \Delta S^\circ = 401.5 \text{ J/K}$

a. -252.6 kJ b. -13.4 kJ c. 13.4 kJ d. 122.9 kJ e. 252.6 kJ 51. Given the following information, calculate ΔG° for the reaction below at 25° C:2 H₂O₂(l) \rightarrow 2 H₂O(l) + O₂(g)

<u>Compound</u>	<u>ΔH° (kJ/mol)</u>	S^{o} (J/K·mol)
$H_2O_2(l)$	-187.8	109.6
$H_2O(l)$	-285.8	69.9
$O_2(g)$		205.1

a. -37700 kJ b. -342.6 kJ c. -233.5 kJ d. -233.5 kJ e. -157.9 kJ 52. For the process, at 25°C, $I_2(g) \rightarrow I_2(s)$, what are the signs of ΔG , ΔH , and ΔS ?

	<u>ΔG</u>	ΔH	<u>ΔS</u>
a.	+	-	-
b.	-	-	-
c.	-	+	+
d.	-	-	+
e.	+	+	+

53. If a process is exothermic and not spontaneous, then what must be true?

a. $\Delta S > 0$ b. $\Delta H > 0$	c. $\Delta G=0$	d. $\Delta S < 0$	e. $\Delta H=0$
54. For any reaction at equilibrium, which of the follo	wing is true?	1 4 77 0	
a. $\Delta H < 0$ b. $\Delta S = 0$	c. $\Delta S < 0$	d. $\Delta H=0$	e. $\Delta G=0$
55. All of the following have $\Delta G^{o}_{f} = 0$ EXCEPT	TT ()	1 9 ()	
a. $O_2(g)$ b. $Br_2(g)$	c. $H_2(g)$	d. $Ca(s)$	e. $Hg(l)$
56. Ammonium nitrate spontaneously dissolves in wat	ter at room temperatur	re and the process cause	es the solution to
become quite cold. Which of the following is TRU	UE about the dissoluti	on of ammonium nitrat	e?
a. The process is exothermic.			
b. Its solubility will be greater in warmer wa	ter.		
c. ΔS° for the reaction is negative.			
d. All solutions of ammonium nitrate are sup	bersaturated.		
e. All solutions of ammonium nitrate are col	d.	()	
57. Under which set of conditions is a chemical reaction	on most likely to be sp	pontaneous?	
ΔH ΔS <u>T (temperature)</u>			
a low			
b nign			
c. + + low			
a. + - nign	0		
58. For which reaction do you expect ΔS to be negative	/e /	$U \cap (l 250C) \to U \cap$	(1, 500C)
a. $2C(s) + O_2(g) \rightarrow 2CO(g)$	С.	$H_2O(l, 25^{\circ}C) \rightarrow H_2O(l, 25^{\circ}C)$	$(l, 50^{\circ}\text{C})$
b. $Br_2(s) \rightarrow Br_2(t)$	d.	$CI_2(g) + 2HI(g) \rightarrow I_2(g)$	(s) + 2HCI(g)
59. Which has the greatest absolute entropy?		1 + f = C + I + () + ()	4.2500
a. one mol of $C(s)$ at 25°C	C.	one mol of $C_2H_6(g)$ at	t 25°C
0. One motion of $CH_3CI(l)$ at 25°C	U. tad to ha tha most nos	one more $C_6\Pi_6(l)$ at	23°C
b). For which of these processes would ΔS be expect	ted to be the most post	$\frac{1000}{100} = \frac{1000}{100} = 10$	
a. $U_2(g) + 2\Pi_2(g) \rightarrow 2\Pi_2U(g)$ b. $H_1O(f) \rightarrow H_1O(g)$	С.	$N_2O_4(g) \rightarrow 2NO_2(g)$	12UO(a)
0. $\Pi_2 O(l) \rightarrow \Pi_2 O(s)$	u.	$\mathrm{NH}_4\mathrm{NO}_2(s) \to \mathrm{N}_2(g)$	$+2\Pi_2O(g)$
61. For which of these processes is the value of $\Delta S \exp \left(\frac{1}{\Delta S}\right)$	pected to be negative.	(
I. Sugar is dissolved in wate			
II. Steam is condensed	c CoO and CO		
III. CaCO ₃ is decomposed int	to CaO and CO_2 .	II only	
a. Tomy b. Land III only	C.	II only II and III only	
62 Which set of conditions is most likely to result in	u. a reaction that is spon	tancous as written?	
12. Which set of conditions is most likely to result in a	a reaction that is spon	laneous as written?	
$\Delta H \Delta S I$			
a. $<0 <0 500$ °C			
b. $<0 <0 0^{\circ}$			
c. $>0 < 0 0^{\circ}$			
$d. > 0 < 0 > 500^{\circ}C$	1 1 1 1 00		
63. For which of these processes is the sign of the entr	halpy change different	t from the others?	
e. $AI_2O_3(s) \rightarrow 2 AI(s) + 3/2 O_2(g)$	g.	$Cl_2(g) \rightarrow 2Cl(g)$	
f. $H_2O(s) \rightarrow H_2O(l)$	h.	$CI(g) + e \rightarrow CI'(g)$	
64. For the process $O_2(g) \rightarrow 2 O(g), \Delta H^0 = +498 \text{ kJ}$. V	What would be predict	ed for the sign of $\Delta S_{\rm rxn}$	and the conditions
under which this reaction would be spontaneous?			
$\Delta S_{\rm rxn}$ Spontaneous			
a. positive at low temperatures only			
b. positive at high temperatures only			
c. negative at high temperatures only			
d. negative at low temperatures only			
65. For the reaction $NH_4Cl(s) \rightarrow NH_3(g) + HCl(g)$, $\Delta H_3(g) + HCl(g)$	$H^{\circ} = +176$ kJ and ΔG°	= +91.2 kJ at 298 K. W	hat is the value of
ΔG at 1000 K?			
i109 kJ j64 kJ	k.	+64 kJ	1. +109 kJ
66 When ammonium nitrate $NH_1NO_2(s)$ is added to x	water at 25°C it disso	lves spontaneously and	the temperature of

66. When ammonium nitrate, NH₄NO₃(s) is added to water at 25°C, it dissolves spontaneously and the temperature of the solution decreases. This indicates that the factor causing the substance to dissolve is a change in m. energy n. enthalpy o. entropy p. temperature