3 – Stoichiometry

STUDY GUIDE

I can:

Chemical Equations

- Give examples of **products** and **reactants** in a chemical equation.
- State that Antoine Lavoisier introduced the law of conservation of matter.

Combustion

- State that **combustion** is another name for **burning**.
- Write an equation for a combustion reaction given only the **fuel** that is burned.
- O Correctly label substances in an equation as solid (s), gas (g), liquid (l), or aqueous (aq)

Balancing Equations

- o Balance equations by adding coefficients.
- o **Recognize** when an equation is balanced.
- State that the **formulas** of reactants and products **should not be changed** in order to balance equations.

Stoichiometry Problems

- Use the stoichiometric factor (heart of the problem) to convert from moles of one substance to moles of a different substance. (i.e. In the equation: N₂ + 3H₂ → 2NH₃, 3 mol H₂ ≈ 2 mol NH₃)
- Convert between the quantities of mass, volume, molecules and moles using dimensional analysis(i.e. use 1 mol = 22.4 L, 1 mol = 6.02 x 10²³ molecules, and 1 mol = gram molecular mass)
- Show the units of molar mass as grams/mol or g-mol⁻¹.

Limiting Reactant Problems

- o Recognize that a problem with two "given values" is a **limiting reactant** problem.
- Determine the limiting reactant and excess reactant in a problem.
- o Solve problems involving Limiting Reactants
- Calculate how much excess chemical is left over after a reaction.

Percent Yield Problems

- Use stoichiometry to calculate the **theoretical yield** (mass of a product) in a problem.
- State that **actual yields** are usually given in a problem.
- Use the **theoretical yield** and **actual yield** to calculate the **percent yield**.

Chemical Analysis Problems

- Calculate the mass of each element in a given compound given data such as the masses of CO₂ and H₂O formed in a combustion reaction.
- Use mass and mole information to calculate the **empirical formula** of an unknown substance.
- Use percent composition to equalize mass and mole information derived from different samples.

Continuous Variation Data

 Use "continuous variation" laboratory data to determine the correct mole ratio of an equation. (Micro Mole Rockets Lab)