The Electron Topic#5 AMSAT Chem 1H Student Edition | | Electrons | |-------------------|-----------| | Objectives | Topic#5 | ## **New Atomic Model** - 1) Explain the mathematical relationship among speed, wavelength, and frequency of electromagnetic radiation. - 2) Discuss the dual wave-particle nature of light. - 3) Discuss the significance of the photoelectric effect and line-emission spectrum of hydrogen to the development of the atomic model. direct 4) Describe the Bohr model of the hydrogen atom. | A wavelength | XT $v \neq E \downarrow$ | TX $x \neq C \neq C$ | Y frequery | X | V | E | | E | E | C | | E | E | C | | E | E | C | | E | E | C | | E | E | C | | E | E | C | | E | C # Electrons Topic#5 #### Waves, Photons, and Energy - Light is electromagnetic radiation (EM) - Exhibit wave-like behavior as it travels through space - EM Spectrum - all light from gamma ray to radio waves - all forms have the same speed: $3.00 \times 10^8 \text{m/s} = c$ - characterized by a wavelength(λ , lambda) and frequency(v, nu) - each form has a different frequency and wavelength - Wavelength is the distance between two crest/troughs of a wave Measured in meters (m) - Frequency is a measure of the number of items that pass a given point over a specific time, for light it is cycles per second. - Measured in 1/s or Hz (hertz) - $c = \lambda x v$, what is the label for speed? - highest E and v, short λ lowest E and v, long λ (gamma ray/x-ray/UV/VIB G YOR/IR/microwave/TV/radio) - Energy of a photon of light: $E = hv = hc/\lambda$ - Label for energy is joules (J) - Planck's constant (h) = 6.626×10^{-34} J·s ## Electrons Topic#5 # Waves, Photons, and Energy # Waves, Photons, and Energy # Electrons Topic#5 ## Waves, Photons, and Energy # Electrons Topic#5 Gamma ray production X-ray production ## Electrons Topic#5 # Waves, Photons, and Energy __ Electrons Topic#5 Waves, Photons, and Energy $c = \lambda \times V$ $c = 3.00 \times 10^8 \text{m/s}$ Electron Topic#4 - Sample WS#1 - Waves and Energy $E_{ph} = hv = hc/\lambda$ $h = 6.626 \times 10^{-34} \text{J} \cdot \text{s}$ 1. Red light has a wavelength 675nm. What is the frequency and energy of this red light photon? $\lambda = \frac{6 \text{ on}}{4.75 \text{ nm}}$ $\lambda = \frac{6 \text{ on}}{4.75 \text{ on}}$ $\lambda = \frac{6 \text{ on}}{4.75 \times 10^{-9} \text{ m}}$ $\lambda = \frac{3.00 \times 10^{\frac{8}{10}} \text{ on}}{4.75 \times 10^{-9} \text{ m}} = \frac{4.44 \times 10^{\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}}$ $\lambda = \frac{6.62 \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}}$ $\lambda = \frac{6.62 \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} = \frac{1.94 \times 10^{-\frac{14}{10}} \text{ on}}{4.44 \times 10^{\frac{14}{10}} \text{ on}} =$ Waves, Photons, and Energy Electrons Topic#5 $c = \lambda \times v$ $c = 3.00 \times 10^8 \text{m/s}$ $$E_{ph} = hv = hc/\lambda$$ $h = h$ $h = 6.626 \times 10^{-34} \text{J} \cdot \text{s}$ 2. Green light has a frequency of 6.00×10^{14} Hz. What is the wavelength and energy of this green light photon? (Ans: 5.00×10^{-7} m/3.98×10⁻¹⁹ J $$V = \frac{G vn}{(1/8)} \qquad \frac{NTK}{\lambda} = \frac{0nK}{\sqrt{2}} \qquad \frac{vnK}{\sqrt{2}} = \frac{3.00 \times 10^{-7} \text{m}/3.9}{\sqrt{2}} = \frac{3.00 \times 10^{-7} \text{m}/5}{\sqrt{2}} = \frac{3.00 \times 10^{-7} \text{m}/5}{\sqrt{2}} = \frac{3.00 \times 10^{-7} \text{m}/5}{\sqrt{2}} = \frac{3.98 \times 10^{-17} \text{J}}{\sqrt{2}}$$ $$E = \frac{3.00 \times 10^{-7} \text{m}/5}{\sqrt{2}} = \frac{3.98 \times 10^{-17} \text{J}}{\sqrt{2}} 10^{-17}$$ | | Electrons | | | |----------------------------|-----------|----------------------------------|---| | Waves, Photons, and Energy | Topic#5 | $c = \lambda \times v$ | $c = 3.00x10^8 \text{m/s}$ | | | | $F_{\rm nh} = h v = h c/\lambda$ | $h = 6.626 \times 10^{-34} \text{J} \cdot \text{s}$ | 3. (OYO) What is the energy and frequency of a violet light photon with a wavelength of 434 nm? (Ans: $4.58 \times 10^{-19} \text{J}/6.91 \times 10^{14} \text{Hz}$ or (1/s)) | | Electrons | | | |----------------------------|-----------|----------------------------------|---| | Waves, Photons, and Energy | Topic#5 | $c = \lambda \times v$ | $c = 3.00x10^8 \text{m/s}$ | | | | $F_{\rm nh} = h v = h c/\lambda$ | $h = 6.626 \times 10^{-34} \text{J} \cdot \text{s}$ | 4. (OYO) What is the energy and wavelength of a orange light photon with a frequency of $4.95x10^{14}Hz$? (Ans: $3.28x10^{19}J/6.06x10^{7}m$) | | Electron | |----------------------|----------| | Photoelectric Effect | Topic# | # • The photoelectric effect describes the collision between a photon and an electron in a metal. - If the photon has ENOUGH energy, it will eject the electron from the surface of the metal. - At the moment of collision, the photon is considered a particle with no mass. - Every metal needs a photon of specific energy for the effect to ocurr. - Max Planck proposed hot objects release light in the form of packets called quanta. - quantum of energy minimum amount of energy that can be gained or lost by an atom. - Planck's constant, 6.626x10⁻³⁴ J•s - Photon a particle of EM radiation with no mass and carrying a quantum of *E*. - Albert Einstein light has a <u>dual wave-particle nature</u>. Used Planck's theory to explain the photoelectric effect. - Arthur Compton (American physist) conclusively proved the particle nature of light when he demonstrated a photon hitting and moving an electron. This is called the Compton effect. # **Photoelectric Effect** Photoelectric effect $KE = 1/2mv^2$ ## Electrons Topic#5 | Electrons | |-----------| | Topic#5 | #### **Bohr Model of Atom** - The hydrogen atom line emission spectrum is made from the excitation of the hydrogen atom - Gaseous H is in its ground state, but when energy is added it becomes excited (excited state). - Electrons in the excited state must release energy to move back to their ground state. - the energy released is in the form of a photon of a specific energy. - Using a prism, the photons are separated into individual colors of light (line-emission spectrum). - Each pure substance has a unique, identifying line-emission spectrum. - White light produces a continuous spectrum (rainbow means happy!). # Electrons Topic#5 #### **Bohr Model of Atom** Niels Bohr - Linked the electrons in hydrogen to photon emission. - Electrons were quantized (had specific energies) which means they could only exist in certain orbits around the nucleus. - Labeled each orbit (energy level) by a quantum number (*n*). Lowest (ground state) *n* = 1, orbit closest to the nucleus. - When a quantum of energy equivalent to the change in energy between energy levels is absorbed the electron "jumps" to a higher energy level (n = 2, 3, 4, 5, 6, or 7) where it is considered to be in an excited state (larger orbits further away from the nucleus). - When the electron falls to a lower energy level a photon equivalent in energy is emitted. - Only worked for hydrogen not for any other atom. - Bohr used this model and Planck's equation to calculate the frequencies observed in the lines spectrum of hydrogen. ## **Bohr Model of Atom** ## Electrons Topic#5 | | Electrons | | |------------------------|-----------|--| | Line Emission Spectrum | Topic#5 | | Laser - Light Amplification by Stimulated Emission of Radiation | Electrons | |-----------| | Tonic#5 | # **Line Emission Spectrum** # Ar, Argon $c = 3.00 \times 10^8 \text{ m/s}$ $h = 6.626 \text{x} 10^{-34} \text{J} \cdot \text{s}$ $$\lambda =$$ $$v =$$ $$E =$$ He, Helium Helium Helium Neon Bright Line Spectra of Helium and Neon **Electrons** Electrons Topic#5 N₂ - Nitrogen Ne - Neon | | Electrons | | |------------|-----------|--| | Objectives | Topic#5 | | ## Quantum Model of Atom - 1) Discuss Louis de Broglie's role in the development of the quantum model of the atom. - 2) Compare and contrast the Bohr model and the quantum model of the atom. - 3) Explain how the Heisenberg uncertainty principle and the Schrodinger wave equation led to the idea of atomic orbitals. - 4) List the four quantum number and describe their significance. - 5) Relate the number of sublevels corresponding to each of an atom's main energy levels, the number of orbitals per sublevel, and the number of orbitals per main energy level. | | The Electron | | |---------------|--------------|--| | Quantum Model | Topic#5 | | - Electrons as waves - Photoelectric effect and hydrogen line-emission spectrum light both a particle and wave. - Louis de Broglie electrons like waves (matter waves) in Bohr's quantized orbits. Electrons were waves confined to a space and had certain frequencies. Quantization of energy. - Electrons diffract (bend) (use wave nature of electrons for electron microscopes) - All moving objects have wavelike behavior. The larger the object, the smaller the wavelength - 50 gram golf ball has a wavelength of $3x10^{-34}$ m (too small to measure) - The Heisenberg Uncertainty Principle - Detection involved photons. Photons MOVED electrons - Uncertainty in trying to locate an electron. - Principle: Impossible to determine simultaneously the position/velocity of an electron (particle) | Quantu | m Model | |--------|---------| # The Electron Topic#5 - The Schrodinger Wave Equation (Erwin Schrodinger) - Developed an equation to quantify the electrons as waves - Only waves of specific energies (frequencies) satisfied the equation - Regions called <u>orbitals</u> (90% probability of finding electron in orbital) - Along with the Uncertainty Principle, the wave equation led to the Quantum theory - Quantum theory of the atom mathematically describes wave properties of electrons (particles) - Electron Cloud 90% probability of finding electron within this region This wave fits perfectly on the circle This wave, however, doubles over on itself | Ouan | 4 | Mad | اما | |------|-----|-------|-----| | Quan | tum | IVIOU | le | ## The Electron Topic#5 # **Orbitals and Probability** # The Electron Topic#5 ## **Quantum Model** The diffraction pattern on the left was made by a beam of x rays passing through thin aluminum foil. The diffraction pattern on the right was made by a beam of electrons passing through the same foil. Diffraction pattern of a beam of x-rays passing through Al foil. Diffraction pattern of a beam of electrons passing through Al foil. #### The Electron Topic#5 #### **Quantum Numbers** - specify the properties of atomic orbitals and the properties of the electrons in orbital - Principal Quantum Number (n) - main energy level occupied by electron - values: 1-7 (n = 1: ground state (g.s)) - as *n* increases, distance from electron to nucleus increases (energy) - Angular momentum quantum number (1) - the shape of the orbital (sublevels) - types of sublevels (orbitals): s, p, d, and f - \blacksquare number of orbital shapes possible is equal to n - n = 1, one type of orbital (s) - n = 2, two types of orbitals (s and p) - n = 3, three types of orbitals (s, p, and d) - n = 4, four types of orbital (s, p, d, and f) - \blacksquare values for l are 0, 1, 2, and 3 - l = 0: s type orbital (1 orbital) - l = 1: p type orbital (3 orbitals) - l = 2: d type orbital (5 orbitals) - l = 3: f type orbital (7 orbitals) | ሰ፣ ሩ | 747767 | | | |-------------|-------------|-----------------------|-----| | • | $n^2 = 4$ | # of or bitals | - | | number of o | orbitals pe | r energy level, n^2 | 20- | 2 years Albituls - when n = 2 then $n^2 = 2^2 = 4$ orbitals in the second energy level - μ when n = 2 there are 2 types of sublevels (s and p) containing 4 orbitals (one from the s type sublevel and three from p type orbital). - number of electrons per energy level is $2n^2$. | ل ل ا م | n | <u> </u> | type (sub-shell) | # e | |---------------------|---|----------|------------------|----------------| | P,+d - | 1 | 0 | 5 | 2 | | <i></i> | 2 | ا ره | s, P | <u>م</u>
لا | | | | 0,1,2 | 3,0,2 | 18 | | 9 orbitul
n2=329 | 4 | 0,1,2,3 | 3,9,3,7 | 32 | | 18 cleations | | 0, 1,2,3 | s,p,d,f | 35 | #### **Quantum Numbers** ## The Electron Topic#5 1,0,0,+% ## • magnetic quantum number (m_l) •orientation of orbital around nucleus n, e, ms, ms - number of orbitals (each holds 2 electrons) in a type $(5) \cdot l = 0 -> m_l =$ s type with 1 orbital 0; (P) $l = 1 - > m_l = -1,0,1;$ p type with 3 orbitals (4) $l = 2 -> m_l = -2, -1, 0, 1, 2; d$ type with 5 orbitals (4) • $$l = 3 --> m_l = -3, -2, -1, 0, 1, 2, 3; f$$ type with 7 orbitals - spin quantum number (m_s) - (+1/2) clockwise spin and (-1/2) counterclockwise spin - only two values and an orbital has no more than 2 electrons - P -T 0 +T d = 7 0 +1 +2 f-3-2-10-1-23 +1/2 1,0,0, -3 • creates opposite magnetic fields, so an attraction exists between the two electrons in the orbital. Otherwise electrostatic repulsion would never allow the electrons to be in the same orbital. | The Electron | 1 | |--------------|---| | Topic#5 | | #### **Quantum Numbers** Electron Topic#5 Sample Exercise WS#2 - Energy Levels 1. How many subshells (types of orbitals) are in shell two? ח=2 , 2 subshells (5, ס) How many orbitals can shell two have? $n^2 = 2^2 = 4$ orbitals How many electrons can shell two have? 2 2 2(2) = 8 electrons 2. How many subshells (types of orbitals) are in shell five? n = 5, 5 subshells (5, ρ , d, d, d. How many orbitals can shell five have? $n^2 = 5^2 = 25$ orbitals (1 + 3 + 5 + 7 = 16 orbitals). How many electrons can shell five have? $2n^2 = 2(5)^2 = 60$ electrons (32 electrons) + When n= 4,5,6 or 7 number of sublevels is 4 (s, p, d, f) and electrons is | The E | lectron | |-------|---------| | Top | ic#5 | # **Quantum Numbers** | Principal Energy
Level (n) | Numb
s | er of C | Orbital
d | s Present
f | Total Number of
Orbitals (n ²) | Maximum Number of Electrons (2n ²) | |-------------------------------|-----------|---------|--------------|----------------|---|--| | 1 | 1 | _ | | - | 1 | 2 | | 2 | 1 | 3 | - | - | 4 | 8 | | 3 | 1 | 3 | 5 | - | 9 | 18 | | 4 | 1 | 3 | 5 | 7 | 16 | 32 | | | The Electron | | |---|--------------|--| | Electron Configuration/Orbital Diagrams | Topic#5 | | Electron configuration - an arrangement of electrons in an atom. **Orbital diagram** - a graphical representation of the electrons in an atom obeying the rules governing placement of electrons. #### Rules - (1) **Aufbau Principle** an electron must occupy the lowest energy orbital that can recieve it. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^{10} 6p^6 7s^2 5f^{14} 6d^{10}$ - (2) **Pauli Exclusion Principle** no two electrons in the same atom can have the same set of four quantum numbers (shothand: only two electrons per orbital with opposite spins.) - (3) **Hund's Rule** orbitals of equal energy are each occupied by one electron before any orbital is occupied by a second electron, and all electrons in singly occupied orbitals must have the same spin state. (shorthand: in *p*, *d*,and *f* type orbitals, each orbital must have one electron in it before a second electron can be placed there.) Electron Configuration/Orbital Diagrams Topic#5 $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^{10}6p^67s^25f^{14}6d^{10}$ The Electron Topic#5 ## **Electron Configuration/Orbital Diagrams** | | The Electro | |---|-------------| | Electron Configuration/Orbital Diagrams | Topic#5 | | Electronic Configuration – Aufbau Diagrams | |--| | <u>Task:</u> To show how the electronic configuration of an element can be represented in a graphical form. Complete an Aufbau Digram for an element from each of period 2, 3, 4 and 5. | | There are three principles which govern the filling of orbitals by electrons: 1) Aufbau Principle: Electrons enter orbitals of lowest energy first. 2) Pauli's exclusion principle: An atomic orbital contains a maximum of two electrons. 3) Hund's Rule: When electrons occupy orbitals of equal energy, one electron enters each orbital until all the orbitals contain one electron with spins parallel. Compared to the contain | | Electron Configuration/Orbital Diagrams | The Electron
Topic#5 | | |--|-------------------------|-----------------------------------| | Sample Problems WS#2 - Electron Config
3. (a) C $Z = $ | | Diagram: | | 3. (a) C $Z = _{_{_{_{_{_{_{_{_{1}}}}}}}}}$ ${1s}$ ${2s}$ ${2p}$ | | | | electron config: | | # of unpaired e : | | (b) Mg $Z = $ $\frac{1s}{1s} \frac{2s}{2s} \frac{2p}{2p}$ electron config: | | # of unpaired e ⁻ : | | (c) S $Z = $ $2s$ $2p$ electron config: | | 3p # of unpaired e ⁻ : | | (d) Cr $Z = $ | 3s | 3p 4s 3d 4s 3d # of unpaired e : | | | | | | The Electr | | | | | |-----------------------|-----------------|-----------------|--------------------|---|---------|----------------------------------|----|--| | Electron Confi | <u>iguratio</u> | <u>on/Orbit</u> | <u>al Diagrams</u> | Topic#5 | | | | | | (e) Ta $Z = $ | 1s | <u>2s</u> | | 3s ==================================== | 3p | 4s | 3d | | | | | 4p | | 4d | | | 6s | | | | | | 4f | | | 5d | | | | elect | ron conf | fig: | | | _ # 0 | of unpaired e : | | | | (f) Sm $Z = $ | 1s | <u>2s</u> | | - 3s - | $-{3p}$ | | | | | | | 4p | | 4d | | 5p | 6s | | | elec | tron cor | | 4f | | # | 5d of unpaired e ⁻ :_ | | | - $\begin{array}{l} 4. \ What \ element \ has \ the \ electron \ configuration: \\ a. \ 1s^22s^22p^63s^23p^64s^23d^{10}4p^5? \\ b. \ 1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{10}? \end{array}$ | Tho | 4. | ectron | |-----|----|--------| #### s,p,d, and f-block Periodic Table Activity Topic#5 - 1) Select 4 colors and create a key with those four colors - a) 1st color: s-block - b) 2nd color: *p*-block - c) 3rd color: d-block - d) 4th color: f-block - 2) Number the columns (groups) 1-18 and the rows (energy levels) 1-7. - 3) Color columns **1-2** the *s*-block color. Color columns **3-12** the *d*-block color. Color columns **13-18** the *p*-block color. - 4) Color the lanthanide and actinide series the f-block color. - 5) Put [He] to the left of Li, [Ne] to the left of Na, [Ar] to the left of K, put [Kr] to the left of Rb, [Xe] to the left of Cs, and [Rn] to the left of Fr. - 6) Create a key for the Noble gas electron configurations listed below: ``` \begin{aligned} & [\text{He}] = 1\text{s}^2 \\ & [\text{Kr}] = 1\text{s}^22\text{s}^22\text{p}^63\text{s}^23\text{p}^64\text{s}^23\text{d}^{10}4\text{p}^6 \\ & [\text{Ne}] = 1\text{s}^22\text{s}^22\text{p}^6 \\ & [\text{Ar}] = 1\text{s}^22\text{s}^22\text{p}^63\text{s}^23\text{p}^64\text{s}^23\text{d}^{10}4\text{p}^65\text{s}^24\text{d}^{10}5\text{p}^6 \\ & [\text{Rn}] = 1\text{s}^22\text{s}^22\text{p}^63\text{s}^23\text{p}^64\text{s}^23\text{d}^{10}4\text{p}^65\text{s}^24\text{d}^{10}5\text{p}^66\text{s}^24\text{f}^{14}5\text{d}^{10}6\text{p}^6 \\ \end{aligned} ``` - 7) Element boxes: put a 1 in H/He, 2 in Li/B, 3 in Na/Sc/Al, 4 in K/Y/Ga/Ce, 5 in Rb/La/In/Th, 6 in Cs/Ac/Tl, and 7 in Fr. Circle all of the numbers you just put in the element boxes. - 8) Put a 1 above H, 2 above Be, 3 above B, 4 above C, 5 above N, 6 above O, 7 above F, 2 above He, and an 8 to the right with an arrow towards Ne. - 9) These are the <u>valence electrons</u> (outer *s* and *p* electrons) for the groups under the numbers. So, **B** has a valence of **3** and **Ne 8**. - 10) The elements in the s-block and p-block are called main-group or representative elements. | Electron Configuration/Orbital Diagrams 5. Draw the electron configuration, orbital diag | The Electron Topic#5 [Ne] = $1s^22s^22p^6$ [Ar] = $1s^22s^22p^63s^23p^6$ [Kr] = $1s^22s^22p^63s^23p^64s^23d^{10}4p^6$ [Xe] = $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^6$ [Rn] = $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^{10}6p^6$ ram, Noble gas electron configuration, and valence electrons: | |---|---| | a. Ca | e. Pb | | b. P | | | c. Co | | | d. Pd | | | The | Electro | |-----|---------| | T | opic#5 | ## **Electron Configuration/Orbital Diagrams** # **Isoelectronic** Ions with the same electronic configuration as a noble gas are said to be isoelectronic with a noble gas. | The Electron | | |-------------------------|--| | Topic#5 | | | Line Emission | | | | | | (Use in periodic table) | | (Use in periodic table) Na - $1s^2 2s^2 2p^6 3s^1$ | Valence Electrons - outer s and p electrons | |--| | Valence Electrons: | | | | How many electrons would this atom need to gain/lose to become an ion? | | Calculation for charge: | | What is the charge and symbol for the ion? | |
The Electron | | |------------------|--| | Topic#5 | | | Line Emission | | # (Use in periodic table) ## **Sample Problem 4.6** – Valence Electrons and Electron Dot Diagram Determine the valence electrons and show the electron diagram of each of the following elements. | Val Electrons | e Dot | Val Electrons | e Dot | Val Electrons | e Dot | |---------------|-------|---------------|-------|---------------|-------| | (1) Na | | (5) Ra | | (8) Si | | | (2) Cs | | (6) Rn | | (9) C1 | | | (3) Mg | | (7) O | | (10) C | | | (4) Al | | | | | |