\qquad

Acid/Base Topic\#14

WS\#1: Introduction to Acids and Bases

Name the following acids and bases. Classify as strong acid (SA), weak acid (WA), strong base (SB), or weak base (WB).

1. $\mathrm{HBr}(a q)$	hydrobromic acid	SA
2. $\mathrm{NaOH}(s)$	sodium hydroxide	SB
3. $\mathrm{HNO}_{2}(\mathrm{aq})$		
4. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$		
5. $\mathrm{HCN}(a q)$		
6. $\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})$	methyl amine	WB
7. $\mathrm{HNO}_{3}(\mathrm{aq})$		
8. $\mathrm{HI}(a q)$		
9. $\mathrm{Ca}(\mathrm{OH})_{2}(s)$		
10. $\mathrm{Sr}(\mathrm{OH})_{2}(s)$		
11. $\mathrm{HClO}_{4}(a q)$		
12. $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})$		

24. What is an acidic hydrogen? ___ a hydrogen that can be donated to water
25. What is a binary acid?
26. What is an oxyacid?
27. What is a carboxylic acid?
28. What is an amine?
29. Which of the following compounds has an acidic hydrogen? $\mathrm{HNO}_{3}, \mathrm{CH}_{4}, \mathrm{HBr}$, or H_{2}

Write an "A" if it is a property of an acidic solution, a " B " if it is a property of a basic solution, and " X " if it is a property of both.
30.
31. \qquad often feels smooth and slippery
35. \qquad typically does not react with metals
32. \qquad stings in open wounds
33. \qquad typically reacts vigorously with metals
34. \qquad has a bitter taste
36. \qquad turns litmus paper from blue to red
37. \qquad is an electrolyte
38. \qquad often looks like pure water
39. ___ turns litmus paper from red to blue

WS\#2: Acid-Base Theories

1. What is an Arrhenius definition of an acid? Base
2. What is the Bronsted-Lowry (BL) definition of an acid? Base?
3. Why might NH_{3} not be considered a base according to the Arrhenius definition?
4. Why is the Bronsted-Lowry definition of acids and bases more encompassing than the Arrhenius definition?
5. Why is the H^{+}ion the same as a proton?

According to Bronsted-Lowry (BL) theory, an acid is a proton $\left(\mathrm{H}^{+}\right)$donor, and a base is a proton acceptor.

The HCl acts as an acid, the OH^{-}as a base. This reaction is reversible in that the $\mathrm{H}_{2} \mathrm{O}$ can give back the proton to the Cl^{-}.
Label the Bronsted-Lowry acid, base, conjugate acid, and conjugate base in the following reactions and show the direction of proton transfer.
6. $\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q)$
7. $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+\mathrm{OH}^{-}(a q) \leftrightarrow \mathrm{HSO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
8. $\mathrm{HSO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrow \mathrm{SO}_{4}^{-2}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
9. $\mathrm{OH}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \leftrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{H}_{2} \mathrm{O}(l)$
10. $\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$
16. Which is a stronger base, $\mathrm{HSO}_{4}{ }^{-}$or $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$?
11. $\mathrm{HNO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{2}^{-}(a q)$
12. $\mathrm{HCN}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CN}^{-}(a q)$
13. $\mathrm{NH}_{3}(a q)+\mathrm{HF}(a q) \leftrightarrow \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{F}^{-}(a q)$
14. $\mathrm{ClO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrow \mathrm{OH}^{-}(a q)+\mathrm{HClO}(a q)$
15. $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(a q)+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CH}_{3} \mathrm{NH}_{2}(a q)$
17. Which is a weaker base, Cl^{-}or NO_{2}^{-}?

In the exercise, Bronsted-Lowry acids and bases, it was shown that after an acid has given up its proton; it is capable of getting back that proton and acting as a base. Conjugate base s formed after the acid gives up a proton.
Stronger acids produce weaker conjugate bases. Weaker acids produce stronger conjugate bases.
Conjugate Pairs

	Acid	Base	Equation	
18.	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{HSO}_{4}{ }^{\text {1- }}$	$\mathrm{H}_{2} \mathrm{SO}_{4} \leftrightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}{ }^{\text {I- }}$	
19.	$\mathrm{H}_{3} \mathrm{PO}_{4}$			
20.		F		
21.		$\mathrm{NO}_{3}{ }^{-}$		
22.	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{\text {- }}$			
23.	$\mathrm{H}_{2} \mathrm{O}$			
24.		$\mathrm{SO}_{4}{ }^{2-}$		
25.	$\mathrm{HPO}_{4}{ }^{\text {2- }}$			
26.	NH_{4}^{+}			
27.		$\mathrm{H}_{2} \mathrm{O}$		

28. An ionic compound that forms from an acid-bases neutralization reaction is $a(n)$ \qquad .
29. A(n) \qquad is a substance that conducts electricity.
30. The chloride ion $\left(\mathrm{Cl}^{-}\right)$is the \qquad base of hydrochloric acid (HCl).
31. The formula $\mathrm{H}_{3} \mathrm{O}^{+}$represents $\mathrm{a}(\mathrm{n})$
32. A(n) \qquad turns one color in an acidic solution and another color in a basic solution.
33. The reaction between an acid and a base is called $a(n)$ \qquad __.
34. Since water can be either an acid or a base in a Bronsted-Lowry acid-base reaction, it is called a(n) \qquad species.

WS\#3: Acid and Base Equilibrium Expressions

1. Write the acid equilibrium constant $\left(K_{\mathrm{a}}\right)$ for the following acids.
a. $\mathrm{H}_{3} \mathrm{PO}_{3}(a q)$
b. $\mathrm{H}_{2} \mathrm{CO}_{3}(a q)$
c. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)$
d. $\operatorname{HOCN}(a q)$
2. Write the base equilibrium constant $\left(K_{\mathrm{b}}\right)$ for the following bases.
a. $\mathrm{NH}_{3}(a q)$
b. $\mathrm{CH}_{3} \mathrm{NH}_{2}(a q)$
c. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}(a q)$
d. $\mathrm{H}_{2} \mathrm{NNH}_{2}(a q)$

WS\#4: The Self-ionization of Water and $\mathbf{p H}$

Matching
1.
___ self-ionization
a. has $\mathrm{H}_{3} \mathrm{O}^{+}$concentration greater than $1 \times 10^{-7} \mathrm{M}$
___ pure water ion product constant
b. has $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}concentrations of $1 \times 10^{-7} \mathrm{M}$
c. has a pH greater than 7
d. describes this reaction: $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
e. has a $\mathrm{pH}=7$; may contain ions other than $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}
f . is equal to 1×10^{-14} at $25^{\circ} \mathrm{C}$
g. describes the acidity or basicity of a solution
8. A chemist has a solution of unknown pH . Describe the most accurate way the pH can be determined.
9. What is an indicator? How can an indicator be used to measure the pH of a solution?

T or F, Correct if false.
10. In the reaction $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$, products are favored.
11. The ion product constant applies to every water solution at a given T.
12. An acidic solution contains only $\mathrm{H}_{3} \mathrm{O}^{+}$ions.
13. A solution with a pH of 4 is acidic.
14. Indicators are made from neutral solutions.
\qquad
\qquad
\qquad
\qquad

WS\#5: pH and pOH

The pH of a solution indicates how acidic or basic that solution is, in other words, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in solution. The pH range is $0-6.9$ (acidic), 7 (neutral), and 7.1-14 (basic). Since $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} @ 25^{\circ} \mathrm{C}$, if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is known, then the $\left[\mathrm{OH}^{-}\right]$ can be calculated and vice versa. The formulas are $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$. So, if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-6} \mathrm{M}$, then $\mathrm{pH}=6$. Since the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is $1 \times 10^{-6} \mathrm{M}$, the $\left[\mathrm{OH}^{-}\right]$is equal to 1×10^{-14} divided by $1 \times 10^{-6} \mathrm{M}$ which equals $1 \times 10^{-8} \mathrm{M}$. This gives a pOH value of 8 . To check your answer use the formula, $\mathrm{pH}+\mathrm{pOH}=14$.

	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	pH	$\left[\mathrm{OH}^{-}\right]$	pOH	acidic/basic/neutral
1.	$1 \times 10^{-5} \mathrm{M}$	5	$1 \times 10^{-9} \mathrm{M}$	9	acidic
2.		7			
3.			$1 \times 10^{-4} \mathrm{M}$		
4.	$1 \times 10^{-2} M$				
5.		12		11	
6.			$1 \times 10^{-5} \mathrm{M}$		
7.					
8.	$1 \times 10^{-11} M$				
9.					
10.					

WS\#6: $\mathrm{pH}, \mathrm{pOH},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, and $\left[\mathrm{OH}^{-}\right]$

Solve for the unknown and determine whether the solution is acidic, neutral, or basic. Must show work.

1. Analysis of a sample of maple syrup reveals that the concentration of OH^{-}ions is $5.0 \times 10^{-8} \mathrm{M}$. What is the pH and pOH of this syrup? Is it acidic, neutral, or basic? $(\mathrm{pH}=6.70, \mathrm{pOH}=7.30$, acidic $)$
2. In a sample of bananas and water, it is found that $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.51 \times 10^{-5} \mathrm{M}$. What is the corresponding pH value? (Ans: $\mathrm{pH}=4.600$, acidic)
3. $\left[\mathrm{OH}^{-}\right]=7.94 \times 10^{-12} \mathrm{M}$ in a sample of vinegar. What is the pH of the vinegar? (Ans: $\mathrm{pH}=2.900$, acidic)
4. A sample of human blood plasma is found to have a concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions of $3.72 \times 10^{-8} \mathrm{M}$. What is the pH of this sample? (Ans: $\mathrm{pH}=7.430$, basic)
5. In a sample of saturated magnesia, it is found that $\left[\mathrm{OH}^{-}\right]=3.22 \times 10^{-4} \mathrm{M}$. What is the pH and pOH of this sample? (Ans: $\mathrm{pH}=10.508, \mathrm{pOH}=3.492$, basic)
6. Tomatoes are found to have a hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$concentration of $6.2 \times 10^{-5} \mathrm{M}$. What is the pH of these tomatoes? (Ans: 4.21)
7. A saturated solution of calcium carbonate has a hydroxide concentration of $2.44 \times 10^{-4} \mathrm{M}$. What is the pH of this solution? (Ans: $\mathrm{pH}=10.387$, basic)
8. The hydronium concentration in a urine specimen is measured to be $6.3 \times 10^{-6} \mathrm{M}$. What is the pH of this solution? (Ans: $\mathrm{pH}=5.20$, acidic)
9. What is the pH of sour pickles if $\left[\mathrm{OH}^{-}\right]=1.6 \times 10^{-10} \mathrm{M}$? (Ans: $\mathrm{pH}=4.20$, acidic)
10. The hydroxide content of a popular soft drink is measured and found to be $4.11 \times 10^{-9} \mathrm{M}$. What is the pH of this soft drink? (Ans: $\mathrm{pH}=5.614$, acidic)
11. A sample of apple juice has a pH of 2.94 .
a. Determine the pOH
c. What is the hydroxide ion concentration in the juice?
b. What is the hydronium ion concentration in the juice?
(Ans: (a) 11.06 (b) $1.1 \times 10^{-3} M$ (c) $8.7 \times 10^{-12} M$)
12. A solution of baking soda has a pOH of 5.70.
a. Determine the pH .
c. What is the hydroxide ion concentration in baking soda solution?
b. What is the hydronium ion concentration in baking soda solution? (Ans: (a) 8.3 (b) $5.0 \times 10^{-9} \mathrm{M}$ (c) $2.0 \times 10^{-6} \mathrm{M}$)
13. Calculate the pH and pOH for the following strong acids.
a. $\quad 0.01 \mathrm{M} \mathrm{HCl}(a q)$ (Ans: $\mathrm{pH}=2.0$)
b. $\quad 0.030 \mathrm{M} \mathrm{HBr}(a q)$ (Ans: $\mathrm{pH}=1.52$)
c. $0.020 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(a q)$ (Ans: $\left.\mathrm{pH}=1.40\right)$
14. Calculate the pH and pOH for the following strong bases.
a. $\quad 0.50 \mathrm{M} \mathrm{HNO}_{3}$ (Ans: $\mathrm{pH}=0.30$)
b. $\quad 0.0010 \mathrm{M} \mathrm{NaOH}$ (Ans: $\mathrm{pH}=11.0$)
c. $0.50 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}($ Ans: $\mathrm{pH}=14.00)$
15. Calculate the pH and pOH for the following weak acids and bases based on their ionization in water.
a. $2.0 M \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} / \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ (Assume 5.0% dissociation) (Ans: $\mathrm{pH}=1.00$)
b. $3.0 \mathrm{MHF}(a q)$ (Assume 10.0% dissociation)(Ans: $\mathrm{pH}=0.52$)
c. $5.0 M \mathrm{HNO}_{2}(a q)$ (Assume 1.0% dissociation) (Ans: $\mathrm{pH}=1.30$)
d. $0.150 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$ (Assume 4.8% dissociation) (Ans: $\mathrm{pH}=11.86$)

Predict the products and write a balanced molecular equation.
4. $\mathrm{HBr}(a q)+\mathrm{Na}_{2} \mathrm{~S}(a q) \rightarrow$
5. $\mathrm{CsOH}(a q)+\mathrm{NH}_{4} \mathrm{I}(a q) \rightarrow$
6. $\mathrm{HClO}_{4}(a q)+\mathrm{CaCO}_{3} \rightarrow$
7. $\mathrm{Ba}(\mathrm{OH})_{2}(a q)+\mathrm{NH}_{4} \mathrm{Br}(a q) \rightarrow$
8. $\mathrm{HNO}_{2}(a q)+\mathrm{RbOH}(a q) \rightarrow$
9. $\mathrm{HI}(a q)+\mathrm{ZnS}(a q) \rightarrow$

WS\#8: Acid-Base Titration

To determine the concentration of an acid (or base), we can react it with a base (or acid) of known concentration until it is completely neutralized. This point of exact neutralization, known as the endpoint, is noted by the change in color of the indicator. Must show work.

$$
N_{\mathrm{A}} \times V_{\mathrm{A}}=N_{\mathrm{B}} \times V_{\mathrm{B}} \quad \text { where } N=\text { normality, } V=\text { volume }
$$

1. A 25.0 mL sample of HCl was titrated to the endpoint with 15.0 mL of 2.0 N NaOH . What was the normality of the HCl ? What was its molarity? (Ans: $1.2 N$ and $1.2 M$)
2. A 10.0 mL sample of $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)$ was exactly neutralized by 13.5 mL of $1.0 \mathrm{M} \mathrm{KOH}(a q)$. What is the molarity of the $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$? What is the normality? (Ans: 0.675 M and 1.35 N)
3. How much $1.5 M \mathrm{NaOH}(a q)$ is necessary to exactly neutralize 20.0 mL of $2.5 M \mathrm{H}_{3} \mathrm{PO}_{4}(a q)$? (Ans: $1.0 \times 10^{2} \mathrm{~mL}$)
4. How much of $0.50 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$ is necessary to titrate 25.0 mL of $0.050 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$ solution to the endpoint? (Ans: 5.0 mL)
5. What is the molarity of a $\mathrm{NaOH}(a q)$ solution if 15.0 mL is exactly neutralized by 7.5 mL of a $0.02 M \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)$ solution? (Ans: 0.010 M)
6. What is the molarity of an $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)$ solution if 45 ml of the solution needed 75 mL of $0.10 \mathrm{M} \mathrm{NaOH}(a q)$ to neutralize it? (Ans: 0.083 M)
7. A $150 . \mathrm{mLsolution}$ of $0.250 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}(a q)$ was titrated with $0.50 \mathrm{M} \mathrm{HBr}(a q)$. How much $\mathrm{HBr}(a q)$ was needed to neutralize the $\mathrm{Ca}(\mathrm{OH})_{2}(a q)$ solution? (Ans: 150 mL)
8. What is the molarity of a 175 mL sample of phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}(a q)$. The $\mathrm{H}_{3} \mathrm{PO}_{4}(a q)$ solution was neutralized with 80.0 mL of a 0.300 M solution of $\mathrm{Ca}(\mathrm{OH})_{2}(a q)$. (Ans: 0.0914 M)
